James White Parkway Urban Wilderness Corridor Study

City of Knoxville, TN

Eor City of Knoxville Engineering 3131 Morris Avenue Knoxville, TN 37909

Gresham Smith 2095 Lakeside Centre Way #120 Knoxville, TN 37922

Gresham Smith Project No. 44686

February 24, 2022

[This page left intentionally blank]

EXECUTIVE SUMMARY

PURPOSE OF REPORT

The purpose of the James White Parkway Urban Wilderness Corridor Study is to investigate alternatives that meet the traffic demand, satisfy the Tennessee Department of Transportation's (TDOT) request to maintain the corridor's viability as an alternate route for Chapman Highway, and fit the context of the surrounding community. James White Parkway is currently designed as a high-speed controlled access facility. It was originally designed to extend south of Sevierville Pike and connect to Chapman Highway. The City of Knoxville has decided that the future extension of James White Parkway to Chapman Highway does not fit their vision for South Knoxville. As a result, James White Parkway now ends abruptly at Sevierville Pike. The City has recently acquired James White Parkway's existing right-of-way (ROW) from Sevierville Pike north to north of Anita Drive at the bridge approach to the James White Parkway bridge over the Tennessee River from TDOT and plans to modify this 1.1-mile long corridor and surrounding street network into a more multimodal facility. TDOT would continue to maintain the existing bridge over the river and the city would take over responsibility at the end of the bridge as identified in the deed conveying ownership. The goal of this document is to provide functional layouts for the corridor that are agreed upon by both TDOT and the City of Knoxville to move into the next stages of design and implementation.

The proposed changes to James White Parkway are integral to the City's vision for the Urban Wilderness park system in South Knoxville. Knoxville's Urban Wilderness is an outdoor adventure area where visitors can hike, bike, climb, or paddle – all within the heart of the city. Over 50 miles of trails and greenways connect visitors to a nature center, pristine lakes, historic sites, dramatic quarries, adventure playgrounds, five city parks, and a 500-acre wildlife area. James White Parkway is currently an underutilized four-lane urban freeway that serves only motorists. The vision is for James White Parkway to serve as the multi-modal gateway linking neighborhoods throughout South Knoxville and Downtown to the regional outdoor recreation venue. Excess motorist capacity along James White Parkway will be transitioned to serve bicyclists and pedestrians along an urban parkway corridor. Additional information concerning Knoxville's Urban Wilderness can be found on their website at https://www.visitknoxville.com/urban-wilderness/.

DESCRIPTION OF THE STUDY AREA

The project Study Area is located in the City of Knoxville. The limits of the study area along James White Parkway will extend from the bridge over the Tennessee River to the north, to Sevierville Pike to the south. In addition, the study area includes Cottrell Street to the east, Sevier Avenue / East Moody Avenue to the west, and the interchange at Sevier Avenue / Anita Drive. James White Parkway is currently designed as a high-speed controlled access facility with a posted speed limit of 55 mph. The roadway is a major connector between downtown Knoxville and South Knoxville with a bridge across the Tennessee River. The adjacent land use primarily consists of suburban single family residential on the east and west sides of the roadway. Baker Creek Preserve, which is a part of the City's Urban Wilderness, is located at the end of the roadway at Sevierville Pike.

EXISTING TRAFFIC AND SAFETY CONDITIONS

Existing AM and PM peak-hour turning movements were obtained from previous studies and grown to the 2020 and 2040 analysis years using an annual rate of 1.5%. Traffic analyses were developed for the No Build and Build conditions. The studied intersections as well as the James

White Parkway roadway analysis were analyzed with the methodology found in the 6th Edition of the Highway Capacity Manual (HCM). For all study intersections, the overall LOS is B or better. Therefore, under existing conditions, all intersections operate satisfactorily.

Safety analyses were performed for all study corridors using non-intersection crashes.

James White Parkway had a crash rate of 0.410 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, Freeway) is 1.681. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 0.24. This segment had an actual-to-critical crash ratio of 0.17.

Anita Drive from Sevier Avenue/Ford Place to James White Parkway had a crash rate of 1.634 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, 4-Lane Divided) is 3.00. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 0.54. This segment had an actual-to-critical crash ratio of 0.23.

Anita Drive from Hillwood Drive to James White Parkway did not have any non-intersection crashes.

Sevierville Pike from Woodlawn Pike to James White Parkway had a crash rate of 4.04 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, 2 Lane W/TL) is 3.461. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 1.17. This segment had an actual-to-critical crash ratio of 0.61.

Sevierville Pike from James White Parkway to Compton Street had a crash rate of 2.529 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, 2 Lane W/TL) is 3.461. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 0.73. This segment had an actual-to-critical crash ratio of 0.22.

Therefore, the actual corridor crash rate at non-intersection locations along all corridors is less than the statewide average crash rates for similar corridors except Sevierville Pike from Woodlawn Pike to James White Parkway. All segments had an actual-to-critical crash ratio less than 1.0.

The crash rates of intersections that had five (5) or more crashes between June 1, 2017 and May 31, 2020 within the analysis area are outlined below. Of the four (4) intersections with five (5) or more crashes, three (3) had crash rates higher than the statewide average for similar intersections.

The intersection of Anita Drive at Cottrell Street is stop controlled on all approaches. This intersection has a median along Anita Drive that allows travel across Anita Drive. This intersection had a crash rate of 0.85 crashes per millions of entering vehicles. The statewide rate for similar intersections (Urban, Full Stop Intersections on Multilane Divided Facilities) is 0.688. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) is 1.23. This intersection had an actual-to-critical crash ratio of 0.57.

The intersection of Sevierville Pike at Woodlawn Pike is a signalized intersection. This intersection allows full movements and has left-turn lanes on both Sevierville Pike and Woodlawn Pike approaches. This intersection had a crash rate of 1.37 crashes per millions of entering vehicles. The statewide rate for similar intersections (Urban, Signalized Intersections on Multilane Divided Facilities) is 0.609. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) is 2.25. This intersection had an actual-to-critical crash ratio of 1.19.

The intersection of Sevierville Pike at James White Parkway (SB Ramp) is a signalized intersection. This three-legged intersection allows thru movements on Sevierville Pike and has turn lanes on both the southbound James White Parkway approach. This intersection had a crash rate of 0.49 crashes per millions of entering vehicles. The statewide rate for similar intersections (Urban, Signalized Intersections on Multilane Divided Facilities) is 0.609. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) is 0.80. This intersection had an actual-to-critical crash ratio of 0.46.

The intersection of Sevierville Pike at James White Parkway (NB Ramp) is a signalized intersection. This three-legged intersection allows turning movements from Sevierville Pike to northbound James White Parkway approach. This intersection had a crash rate of 0.54 crashes per millions of entering vehicles. The statewide rate for similar intersections (Urban, Signalized Intersections on Multilane Divided Facilities) is 0.609. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) is 0.89. This intersection had an actual-to-critical crash ratio of 0.48.

CONCEPTUAL ALTERNATIVE

The proposed project plans to consolidate the motor vehicle traffic to the southbound side of the road to provide pedestrian and bicycle connections on the northbound side and open up the accessibility of the Urban Wilderness Park to the community by creating this linear park along the neighborhood. The Proposed Alternative accommodates two-way travel on the western portion of James White Parkway and the new access to Urban Wilderness Gateway Park. James White Parkway will be realigned at the southern terminus to provide a direct connection with Sevierville Pike, which will connect to Chapman Highway. This substitutes for the original intent of James White Parkway to connect to Chapman Highway. A clear separation is intended between motor vehicle and pedestrian traffic with the consolidation of the motor vehicle traffic on the existing James White Parkway southbound lanes and a linear park on the existing northbound lanes.

The proposed typical section on James White Parkway would consist of two 11 foot lanes in both northbound and southbound directions, 2 foot inside shoulders, a 4 foot raised median, and 6 foot paved outside shoulders with 2 foot reinforced grass shoulder. The posted speed limit proposed for the corridor is 35 mph.

PROPOSED ALTERNATIVE TRAFFIC ANALYSIS

Intersection and roadway analyses were performed for the proposed alternative using Synchro software and Highway Capacity Software (HCS), respectively. The proposed alternative provides

adequate traffic operations through the design year of 2040 and adequately service the projected traffic demand.

PROPOSED ALTERNATIVE COST

The estimated planning level cost for construction is \$11,200,000, right-of-way (ROW) is \$595,000, Utilities is \$356,00, and preliminary engineering is \$1,030,000 for the Proposed Alternative for a total cost estimate of \$13,200,00. See **Appendix A** for detailed itemization of cost estimates and inflated cost estimate summary.

Table of Contents

Executive Summary	3
Purpose of Report	3
Description of the Study Area	3
1.0 Introduction	
1.1 Purpose of Report	1
1.2 Demographics	1
1.3 Existing Land Use and Zoning	2
1.4 Adjacent Projects	
1.4.1 TIP (2020)	2
1.4.2 LRTP (2017)	
2.0 History and Background	
2.1 Previous Studies	
2.1.1 City of Knoxville	9
3.0 Existing Conditions	
3.1 Description of the Study Area	
3.2 Traffic Volumes	
3.3 Crash History	10
3.4 Level of Service Analysis (No Build Alternative)	18
3.5 Existing Major Structures and Bridges	22
3.6 Field Review	
4.0 Purpose and Need for Improvements	22
5.0 Proposed Alternative	23
5.1 Proposed Alternative Cost	30
5.2 Proposed Alternative Traffic Analysis	30
5.2.1 Projected Traffic Volumes	
5.2.2 Level of Service Analysis (Proposed Alternative)	30
6.0 Environmental Impacts	
7.0 Assessment of Proposed Alternative	
7.1 TDOT Seven Guiding Principles	
8.0 Summary	33

Table 1: Study Area Log Miles	4
Table 3: James White Parkway Study Area, Crash Statistics, Type of Crashes (6/1/17 – 5/31/20	
1))
Table 4. Creek Statistics (S/4/47 F/24/20) James White Derkusy Study Area Symposium 4	6
Table 4: Crash Statistics (6/1/17 – 5/31/20)- James White Parkway Study Area Summary1 Table 5: Crash Statistics (6/1/17 – 5/31/20)- James White Parkway Study Area, Non-Intersection	7 s
Table 6: Crash Statistics (6/1/17 – 5/31/20), James White Parkway Study Area, Intersections wit 5 or more Crashes	h 7
Table 7: Traffic Analysis – 2020 No Build Alternative2	0
Table 8: Traffic Analysis – 2040 No Build Alternative	
Table 9: Existing Structures and Bridges2	
Table 10: Multilane Roadway Analysis3	
Table 11: Traffic Analysis – 2040 Proposed Alternative	1
<u>Figures</u> Figure 1: Mobility Plan 2040 (LRTP) Planned Projects	Q
Figure 2: Vicinity Map	
Figure 3: Location Map	
Figure 4: Aerial Map	
Figure 5: Detailed Location Map	
Figure 6: Urban Wilderness Vision	
Figure 7: James White Parkway Study Area, Crash History (6/1/17 – 5/31/20)1	
Figure 8: James White Parkway Study area, Crashes by Time of Day (6/1/17 - 5/31/20)1	
Figure 9: James White Parkway Study Intersections1	
Figure 10: Flood Map3	

Appendices

Appendix A: Cost Estimate

Appendix B: Technical Memorandum – Exising Traffic Counts

Appendix C: Technical Memorandum – Traffic Data and Projection Summary

Appendix D: Technical Memorandum – Traffic Analysis

Appendix E: Field Review Documentation

1.0 INTRODUCTION

1.1 PURPOSE OF REPORT

The purpose of the James White Parkway Urban Wilderness Corridor Study is to investigate alternatives that meet the traffic demand, satisfy the Tennessee Department of Transportation's (TDOT) request to maintain the corridor's viability as an alternate route for Chapman Highway, and fit the context of the surrounding community. James White Parkway is currently designed as a high-speed controlled access facility. It was originally designed to extend south of Sevierville Pike and connect to Chapman Highway. The City of Knoxville has decided that the future extension of James White Parkway to Chapman Highway does not fit their vision for South Knoxville. As a result, James White Parkway now ends abruptly at Sevierville Pike. The City has recently acquired James White Parkway's existing right-of-way (ROW) from Sevierville Pike north to north of Anita Drive at the bridge approach to the James White Parkway bridge over Tennessee River from TDOT and plans to modify this 1.1-mile long corridor and surrounding street network into a more multimodal facility. TDOT would continue to maintain the existing bridge over the river and the city would take over responsibility at the end of the bridge as identified in the deed conveying ownership. The goal of this document is to provide functional layouts for the corridor that are agreed upon by both TDOT and the City of Knoxville to move into the next stages of design and implementation.

The proposed changes to James White Parkway are integral to the City's vision for the Urban Wilderness park system in South Knoxville. Knoxville's Urban Wilderness is an outdoor adventure area where visitors can hike, bike, climb, or paddle – all within the heart of the city. Over 50 miles of trails and greenways connect visitors to a nature center, pristine lakes, historic sites, dramatic quarries, adventure playgrounds, five city parks, and a 500-acre wildlife area. James White Parkway is currently an underutilized four-lane urban freeway that serves only motorists. The vision is for James White Parkway to serve as the multi-modal gateway linking neighborhoods throughout South Knoxville and Downtown to the regional outdoor recreation venue. Excess motorist capacity along James White Parkway will be transitioned to serve bicyclists and pedestrians along an urban parkway corridor. Additional information concerning Knoxville's Urban Wilderness can be found on their website at https://www.visitknoxville.com/urban-wilderness/.

1.2 **DEMOGRAPHICS**

The 2019 population of Knox County was estimated by the US Census Bureau as 461,104 while the population in 2014 was estimated as 440,732. This results in a growth rate of 0.91%. Select demographics are provided in Table 1, which compares Knox County to equivalent demographics for Tennessee and the United States.

TABLE 1: STUDY AREA LOG MILES

Characteristic	Knox County	Tennessee	United States
Growth Rate (2014-2019)	0.91%	0.79%	0.67%
Unemployment (2019)	4.30%	5.30%	5.30%
Minority Population (2019)	14.50%	22.80%	28.00%
Median Household Income (2019)	\$57,470	\$56,071	\$65,712
Persons Below Poverty Level (2019)	14.50%	13.90%	12.30%
Median Age (2019)	37.4	39	38.5

As shown in Table 1, Knox County has a higher population growth rate than both Tennessee and the United States as a whole. Unemployment rates are lower in Knox County compared to Tennessee and the United States, and there is a slightly higher median household income when compared to the state of Tennessee.

1.3 EXISTING LAND USE AND ZONING

James White Parkway is currently designed as a high-speed controlled access facility with a posted speed limit of 55 mph. The roadway is a major connector between downtown Knoxville and South Knoxville with a bridge across the Tennessee River. The adjacent land use primarily consists of suburban single family residential on the east and west sides of the roadway. Baker Creek Preserve is located at the end of the roadway at Sevierville Pike.

1.4 ADJACENT PROJECTS

1.4.1 TIP (2020)

The Knoxville Area Transportation Planning Organization's (TPO's) *Transportation Improvement Program* (TIP) is a four-year schedule of projects that provides a description of the cost that will occur within the timeframe for the TIP. Projects in the TIP must first have been included in the LRTP. To receive federal funds, a project must be listed in the TIP. The 2020 – 2023 TIP does not list any along James White Parkway. The goal of this Study is to identify the project to be incorporated into the TIP. The 2020 – 2023 TIP lists the following projects near the study area.

Sevier Avenue – South Knoxville Waterfront Roadway Improvements (TIP No. 20-2014-032, TDOT PIN 109677.00)

The project consists of roadway streetscape improvements and utility relocations along Sevier Avenue and will include a new roundabout constructed at the intersection of Foggy Bottom/Sevier Avenue/Island Home Avenue. No additional lanes will be constructed.

South Waterfront Greenway – East of Suttree (TIP No. 20-2017-049, TDOT PIN 127815.00)

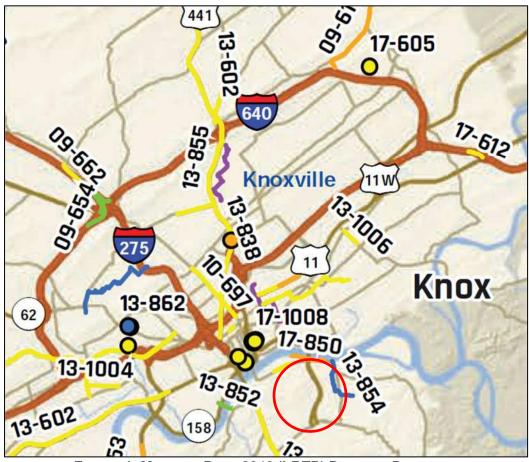
The project consists of constructing a Riverwalk trail connecting the 0.10 mile section of cantilevered Riverwalk along Island Home Avenue to Suttree Landing Park Riverwalk that is just east of Foggy Bottom Street along the Tennessee River.

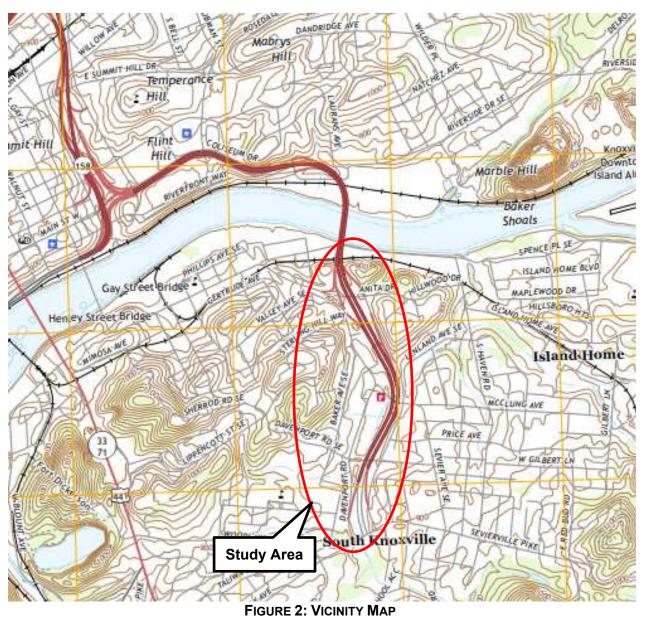
1.4.2 LRTP (2017)

The TPO's *Mobility Plan 2040 Connecting People and Places* is the Long Range Transportation Plan (LRTP) for the Knoxville region. Based on input from regional residents, stakeholders, and elected officials, it guides transportation decision-making in the region over the next two decades. The LRTP is updated every four years. The plan identifies and prioritizes investments of all types of transportation. The current LRTP was adopted in April 2017. As seen in Figure 1, there are no individual construction projections planned within the Study Area. However, the following project has been identified near the study area.

Baker Creek Greenway – Maynard Glenn Park to Island Home Avenue (Mobility Plan No. 13-854)

The project consists of constructing a new shared use path along Baker Creek, connecting Maynard Glenn Park, Mary James Park, to the proposed South Waterfront Greenway.




FIGURE 1: MOBILITY PLAN 2040 (LRTP) PLANNED PROJECTS
Source: Knoxville Regional TPO

2.0 HISTORY AND BACKGROUND

The project Study Area is located in the City of Knoxville. The limits of the study area along James White Parkway will extend from the bridge over the Tennessee River to the north, to Sevierville Pike to the south. In addition, the study area includes Cottrell Street to the east, Sevier Avenue / East Moody Avenue to the west, and the interchange at Sevier Avenue / Anita Drive. **Figure 2** through **Figure 5** provide maps of the Study Area. **Table 2** summarizes the Study Area termini.

TABLE 2: STUDY AREA LOG MILES

Route Name		Begin		End	Distance
Route Name	LM	Description	LM	Description	(miles)
James White Parkway	0.0	Begin	1.1	Island Home Overpass	1.1
Anita Drive	0.815	Sevier Ave/Ford Place	0.0215	James White Parkway	0.0215
Anita Drive	0.22	Hillwood Drive	0.230	James White Parkway	0.230
Sevierville Pike	1.002	Woodlawn Pike	0.208	James White Parkway	0.208
Sevierville Pike	0.0	James White Parkway	0.115	Compton Street	0.115

Source: USGS Quad Maps – 2019 Knoxville, TN

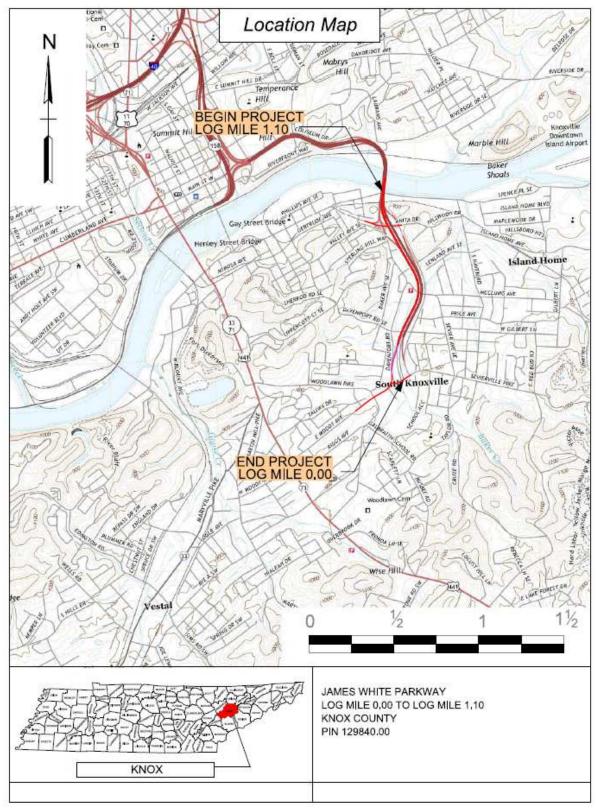


FIGURE 3: LOCATION MAP

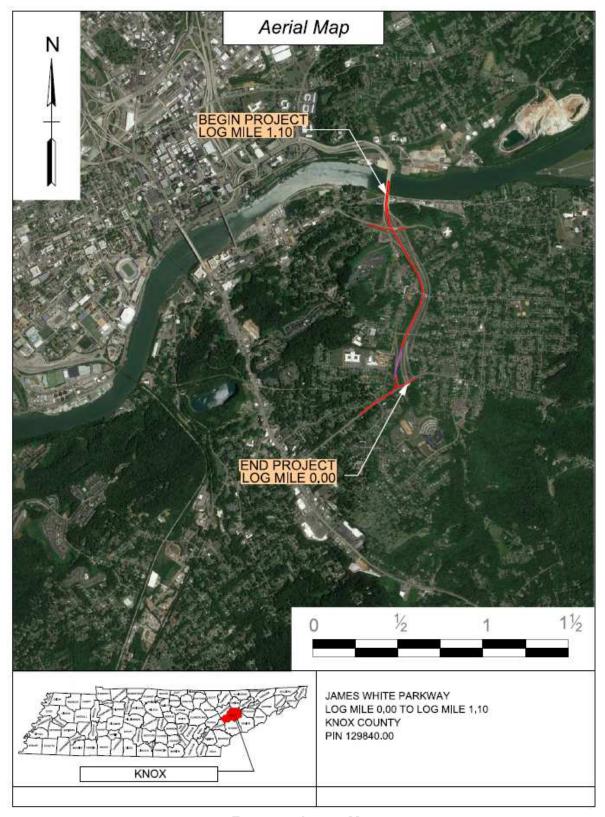


FIGURE 4: AERIAL MAP

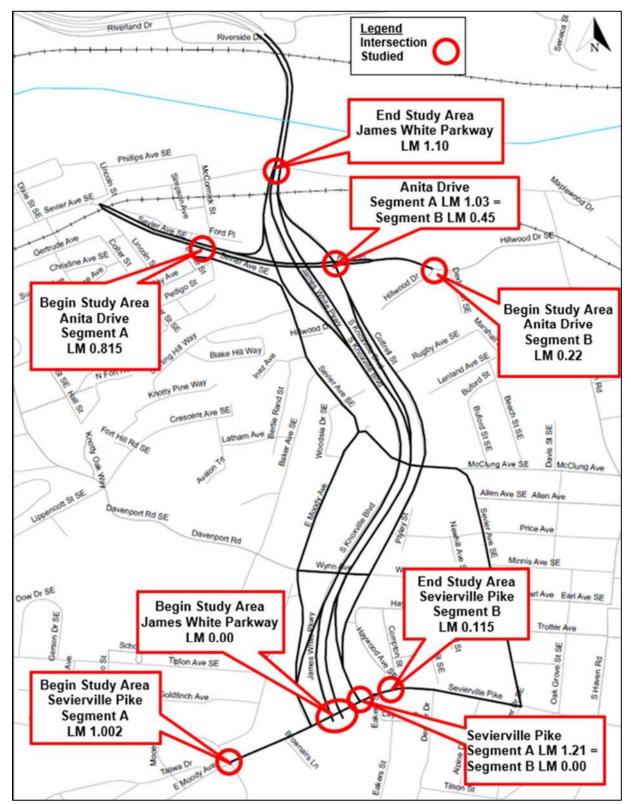


FIGURE 5: DETAILED LOCATION MAP

2.1 PREVIOUS STUDIES

2.1.1 City of Knoxville

Urban Wilderness Gateway Park Project, Framework, Vision + Concept Design Report

Knoxville's Urban Wilderness is an outdoor adventure area where visitors can hike, bike, climb, or paddle – all within the heart of the city. Over 50 miles of trails and greenways connect visitors to a nature center, pristine lakes, historic sites, dramatic quarries, adventure playgrounds, five city parks, and a 500-acre wildlife area (see Figure 6). James White Parkway is currently an underutilized four-lane urban freeway that serves only motorists. The vision is for James White Parkway to serve as the multi-modal gateway linking neighborhoods throughout South Knoxville and Downtown to the regional outdoor recreation venue. Excess motorist capacity along James White Parkway will be transitioned to serve bicyclists and pedestrians along an urban parkway corridor. Additional information concerning Knoxville's Urban Wilderness can be found on their website at https://www.visitknoxville.com/urban-wilderness/.

The City has previously utilized a consultant team to develop the 'Framework, Vision + Concept Design Report for the Urban Wilderness Gateway Park', final report dated August 31, 2018. The report outlines the City of Knoxville's plan to convert James White Parkway from an urban freeway to a multi-modal corridor. The Urban Wilderness Gateway Park site was acquired by the City of Knoxville via an excess land transfer from TDOT. It is located between the terminus of the James White Parkway at Anita Drive and The Baker Creek Preserve south of Sevierville Pike. As part of the Urban Wilderness project, the existing northbound lanes of James White Parkway will be converted into a continuous bike and pedestrian greenway and motor vehicle traffic will be shifted to the west where the existing southbound lanes are located. Therefore, James White Parkway will be two-way traffic on the current southbound lanes.

FIGURE 6: URBAN WILDERNESS VISION

3.0 EXISTING CONDITIONS

3.1 DESCRIPTION OF THE STUDY AREA

James White Parkway is a north-south roadway with a posted speed limit of fifty-five (55) miles per hour on the mainline. It is functionally classified as a Freeway.

Anita Drive is an east-west roadway with a posted speed limit of thirty-five (35) miles per hour. It is functionally classified as an Urban Minor Arterial.

Cottrell Street is a north-south roadway with a posted speed limit of thirty-five (35) miles per hour. It is functionally classified as an Urban Local Route.

Sevierville Pike is an east-west roadway with a posted speed limit of thirty (30) miles per hour. It is functionally classified as a Major Collector.

Sevier Avenue is an undivided two-lane roadway with a posted speed limit of thirty (30) miles per hour. It is functionally classified as an Urban Local Road.

3.2 TRAFFIC VOLUMES

Traffic data from three primary sources were utilized in the James White Parkway Urban Wilderness Corridor Study traffic projections:

- Tennessee Department of Transportation (TDOT) Annual Average Daily Traffic (AADT) Data
- Field Collected Data
- Knoxville Area Transportation Planning Organization (TPO) Travel Demand Model (TDM) Data

Based on the data sources listed above, this study assumed an annual traffic growth rate of 1.5%. Existing AM and PM peak-hour turning movements were obtained from previous studies and grown to the 2020 and 2040 analysis years. The detailed traffic volumes are provided in the Existing Traffic Counts Technical Memorandum in **Appendix B** and the Traffic Data and Projection Technical Memorandum in **Appendix C**.

3.3 CRASH HISTORY

Crash data along James White Parkway, Anita Drive, and Sevierville Pike within the Study Area were obtained from the Tennessee Integrated Traffic Analysis Network (TITAN) database. Crash data from the most recent three years of data were utilized in the analysis (June 1, 2017 through May 31, 2020).

In these years there were:

- 1. James White Parkway
 - a. Seven (7) reported crashes along the 1.1 miles between the beginning of James White Parkway and the Island Home overpass.
 - b. There were no (0) fatal crashes, two (2) serious injury crashes, no (0) other injury crashes, and five (5) property damage only crashes.

- 2. Anita Drive Segment A
 - a. Eight (8) reported crashes along the 0.215 miles between Sevier Avenue/Ford Place and James White Parkway.
 - b. There were no (0) fatal crashes, no (0) serious injury crashes, no (0) other injury crashes and eight (8) property damage only crashes.
- 3. Anita Drive Segment B
 - a. Six (6) reported crashes along the 0.23 miles between Hillwood Drive and James White Parkway.
 - b. There were no (0) fatal crashes, no (0) serious injury crashes, three (3) other injury crashes and three (3) property damage only crashes.
- 4. Sevierville Pike Segment A
 - a. Forty-one (41) reported crashes along the 0.208 miles between Woodlawn Pike and James White Parkway.
 - b. There were no (0) fatal crashes, one (1) serious injury crash, nine (9) other injury crashes and thirty-one (31) property damage only crashes.
- 5. Sevierville Pike Segment B
 - a. Ten (10) reported crashes along the 0.115 miles between James White Parkway and Compton Street.
 - b. There were no (0) fatal crashes, no (0) serious injury crashes, no (0) other injury crashes and ten (10) property damage only crashes.

Figure 7 plots the crash locations within the Study Area. **Figure 8** charts the crashes by time of day along James White Parkway, Anita Drive and Sevierville Pike. The majority of crashes occurred between 1:00 PM and 7:00 PM. **Table 3** through **Table 6** summarizes the crash statistics along James White Parkway, Anita Drive and Sevierville Pike.

Table 3 lists information concerning the types of crashes observed. The majority of the crashes were rear-end (thirty-nine [39] percent) followed closely by angle (thirty-five [35] percent). These types of crashes are typically intersection-related, and the data demonstrate that seventy-four (74) percent of the crashes were at intersections. Seventy-six (76) percent of the crashes occurred in dry road conditions and seventy-four (74) percent during daylight hours.

Table 4 lists overall crash data. Seven (7) of the seventy-two (72) crashes occurred along James White Parkway. Two (2) were serious injury crashes, none (0) were minor injury crashes and five (5) were property damage only crashes. Fourteen (14) of the seventy-two (72) crashes occurred along Anita Drive. Three (3) were minor injury cashes and eleven (11) were property damage only crashes. Fifty-one (51) of the seventy-two (72) crashes occurred along Sevierville Pike. One (1) was a serious injury crash, nine (9) were minor injury crashes, and forty-one (41) were property damage only crashes.

Corridor crash rates are calculated with non-intersection crashes. The calculated, actual, crash rates were compared to statewide crash rates of similar locations. The actual crash rates were also compared to the critical crash rates. The critical crash rate is a statistical control used to be reasonably certain that an observed crash rate differs significantly from the statewide average rate. The statistical control indicates that any actual to critical ratio greater than one (1.0) is most likely not due to chance but to some unfavorable characteristic of the local conditions. TDOT utilizes a ninety-nine percent confidence level in their critical crash rate calculations. **Table 5** lists all non-intersection crashes and shows:

James White Parkway had a crash rate of 0.410 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, Freeway) is 1.681. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 0.24. This segment had an actual-to-critical crash ratio of 0.17.

Anita Drive from Sevier Avenue/Ford Place to James White Parkway had a crash rate of 1.634 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, 4-Lane Divided) is 3.00. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 0.54. This segment had an actual-to-critical crash ratio of 0.23.

Anita Drive from Hillwood Drive to James White Parkway did not have any non-intersection crashes.

Sevierville Pike from Woodlawn Pike to James White Parkway had a crash rate of 4.04 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, 2 Lane W/TL) is 3.461. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 1.17. This segment had an actual-to-critical crash ratio of 0.61.

Sevierville Pike from James White Parkway to Compton Street had a crash rate of 2.529 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, 2 Lane W/TL) is 3.461. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 0.73. This segment had an actual-to-critical crash ratio of 0.22.

Therefore, the actual corridor crash rate at non-intersection locations along all corridors is less than the statewide average crash rates for similar corridors except Sevierville Pike from Woodlawn Pike to James White Parkway. All segments had an actual-to-critical crash ratio less than 1.0.

Table 6 lists the crash rates of intersections that had five (5) or more crashes between June 1, 2017 and May 31, 2020 within the analysis area. Of the four (4) intersections with five (5) or more crashes, three (3) had crash rates higher than the statewide average for similar intersections.

The intersection of Anita Drive at Cottrell Street is stop controlled on all approaches. This intersection has a median along Anita Drive that allows travel across Anita Drive. This intersection had a crash rate of 0.85 crashes per millions of entering vehicles. The statewide rate for similar intersections (Urban, Full Stop Intersections on Multilane Divided Facilities) is 0.688. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) is 1.23. This intersection had an actual-to-critical crash ratio of 0.57.

The intersection of Sevierville Pike at Woodlawn Pike is a signalized intersection. This intersection allows full movements and has left-turn lanes on both Sevierville Pike and Woodlawn Pike approaches. This intersection had a crash rate of 1.37 crashes per millions of entering vehicles. The statewide rate for similar intersections (Urban, Signalized Intersections on Multilane Divided Facilities) is 0.609. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) is 2.25. This intersection had an actual-to-critical crash ratio of 1.19.

The intersection of Sevierville Pike at James White Parkway (SB Ramp) is a signalized intersection. This three-legged intersection allows thru movements on Sevierville Pike and has turn lanes on both the southbound James White Parkway approach. This intersection had a crash rate of 0.49 crashes per millions of entering vehicles. The statewide rate for similar intersections (Urban, Signalized Intersections on Multilane Divided Facilities) is 0.609. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) is 0.80. This intersection had an actual-to-critical crash ratio of 0.46.

The intersection of Sevierville Pike at James White Parkway (NB Ramp) is a signalized intersection. This three-legged intersection allows turning movements from Sevierville Pike to northbound James White Parkway approach. This intersection had a crash rate of 0.54 crashes per millions of entering vehicles. The statewide rate for similar intersections (Urban, Signalized Intersections on Multilane Divided Facilities) is 0.609. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) is 0.89. This intersection had an actual-to-critical crash ratio of 0.48.

Detailed crash analyses are provided in the Traffic Analysis Technical Memorandum in **Appendix D**.

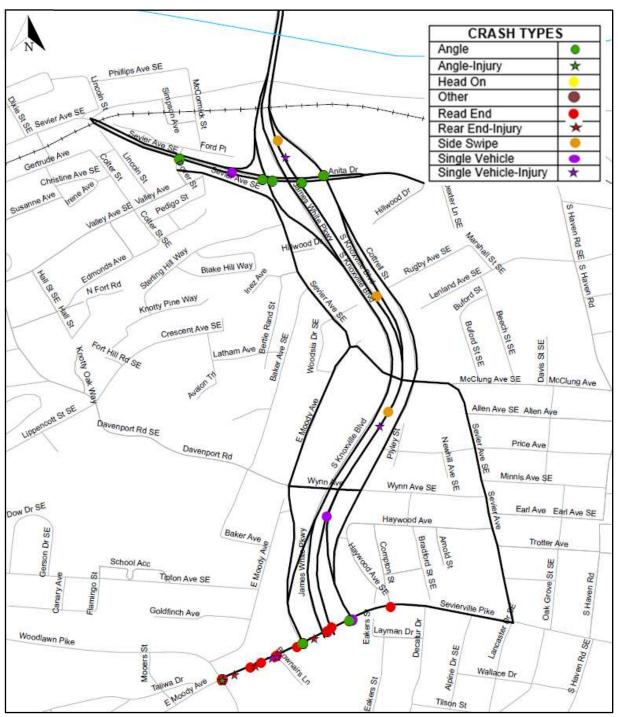


FIGURE 7: JAMES WHITE PARKWAY STUDY AREA, CRASH HISTORY (6/1/17 – 5/31/20)

Source: TITAN Database

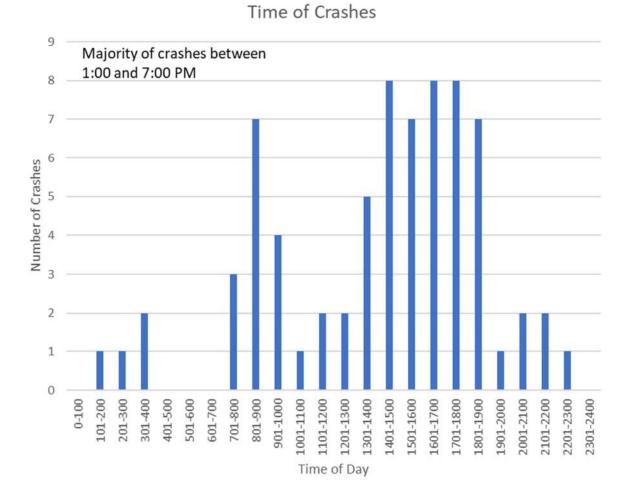


FIGURE 8: JAMES WHITE PARKWAY STUDY AREA, CRASHES BY TIME OF DAY (6/1/17 - 5/31/20)

TABLE 3: JAMES WHITE PARKWAY STUDY AREA, CRASH STATISTICS, TYPE OF CRASHES (6/1/17 - 5/31/20)

	Stu	dy Area
Condition	Number of Crashes	Percentage of Total
	Se	everity
Fatal	0	0%
Serious Injury	3	4%
Other Injury	12	17%
PDO	57	79%
	Manner	of Collision
Angle	25	35%
Rear-End	28	39%
Single Car	8	11%
Sideswipe Same Dir.	3	4%
Head-On	1	1%
Rear-to-Rear	6	8%
Unknown	1	1%
	Road (Conditions
Ice	0	0%
Snow	0	0%
Sand/Mud/Dirt	0	0%
Wet	17	24%
Dry	55	76%
	Light	Condition
Daylight	53	74%
Dusk	3	4%
Dark/Lighted	13	18%
Dark/Not Lighted	3	4%
Not Indicated	0	0%
	Crash	Location
Along Roadway	19	26%
At Intersection	53	74%
Total		72

TABLE 4: CRASH STATISTICS (6/1/17 - 5/31/20)- JAMES WHITE PARKWAY STUDY AREA SUMMARY

					1				0				
Route	Begin	Description	on End Description		Dist.	AADT	Crashes					Actual	Severity
Roule	LM	Description	LM	Description	Dist.	2019	Total	Fatal	Serious Inj.	Other Inj.	PDO	Rate	Index
James White Pkwy	0	Begin	1.1	Island Home Overpass	1.100	14,160	7		2		5	0.410	0.57
Anita Dr	0.815	Sevier Ave/Ford PI	1.03	James White Pkwy	0.215	5,200	8				8	6.535	0.00
Anita Dr	0.22	Hillwood Drive	0.45	James White Pkwy	0.230	4,000	6			3	3	5.956	0.50
Sevierville Pike	1.002	Woodlawn Pike	1.21	James White Pkwy	0.208	9,780	41		1	9	31	18.406	0.27
Sevierville Pike	0.000	James White Pkwy	0.115	Compton Street	0.115	3,140	10				10	25.291	0.00
	Total:				1.9		72	0	3	12	57		

TABLE 5: CRASH STATISTICS (6/1/17 - 5/31/20)- JAMES WHITE PARKWAY STUDY AREA, NON-INTERSECTIONS

	Pagin		End			AADT			Crashes			Actual	Coverity	Statewide	Actual /	Critical	Actual /
Route	Begin LM	Description	LM	Description	Dist.	2019	Total	Fatal	Serious Inj.	Other Inj.	PDO	Rate	Severity Index	Rate	Statewide	Rate	Critical
James White Pkwy	0	Begin	1.1	Island Home Overpass	1.100	14,160	7		2		5	0.410	0.57	1.681	0.24	2.44	0.17
Anita Dr	0.815	Sevier Ave/Ford PI	1.03	James White Pkwy	0.215	5,200	2				2	1.634	0.00	3.000	0.54	7.05	0.23
Anita Dr	0.22	Hillwood Drive	0.45	James White Pkwy	0.230	4,000	0				5	0.000	0.00	3.000	0.00	7.51	0.00
Sevierville Pike	1.002	Woodlawn Pike	1.21	James White Pkwy	0.208	9,780	99		1	3	31	4.040	0.56	3.461	1.17	6.59	0.61
Sevierville Pike	0.000	James White Pkwy	0.115	Compton Street	0.115	3,140	1				1	2.529	0.00	3.461	0.73	11.61	0.22

Notes: Statewide average crash rate for similar facilities (Urban Functional Route, Freeway; 2017-2019) is 1.681 crashes per million vehicle miles Statewide average crash rate for similar facilities (Urban Functional Route, 4-Lane Divided; 2017-2019) is 3.00 crashes per million vehicle miles Statewide average crash rate for similar facilities (Urban Functional Route, 2-Lane W/TL; 2017-2019) is 3.461 crashes per million vehicle miles

TABLE 6: CRASH STATISTICS (6/1/17 - 5/31/20), JAMES WHITE PARKWAY STUDY AREA, INTERSECTIONS WITH 5 OR MORE CRASHES

ID	LM	Route	Side Road	ADT M	ADT Mainline		ADT Side Road		Total	Statewide	Actual/	Critical	Actual/
יוו	LIVI	Route	Side Road	West	East	North	South	# Crashes	Rate	Rate	Statewide	Rate	Critical
1	0.39	Anita Drive	Cottrell Street	4,000	4,000	2,460	2,460	6	0.85	0.688	1.23	1.48	0.57
2	1.002	Sevierville Pike	Woodlawn Pike	9,780	9,780	2,220	2,220	18	1.37	0.609	2.25	1.15	1.19
3	1.153	Sevierville Pike	James White Parkway SB Ramp	9,780	9,780	14,160		9	0.49	0.609	0.80	1.06	0.46
4	0.048	Sevierville Pike	James White Parkway NB Ramp	9,780	3,140	14,160		8	0.54	0.609	0.89	1.11	0.48

Notes: SW Rate for urban full stop intersections on multi-lane divided facilities (2017-2019): SW Rate for urban signalized intersections on two lane facilities with turn lanes (2017-2019):

0.688

0.609

3.4 LEVEL OF SERVICE ANALYSIS (NO BUILD ALTERNATIVE)

Figure 9 provides a map of the Study Area. The limits of the study area along James White Parkway will extend from the bridge over the Tennessee River to the north and to Sevierville Pike to the south. In addition, the study area includes Cottrell Street to the east, Sevier Avenue/E. Moody Avenue to the west, and the interchange of James White Parkway at Sevier Avenue / Anita Drive.

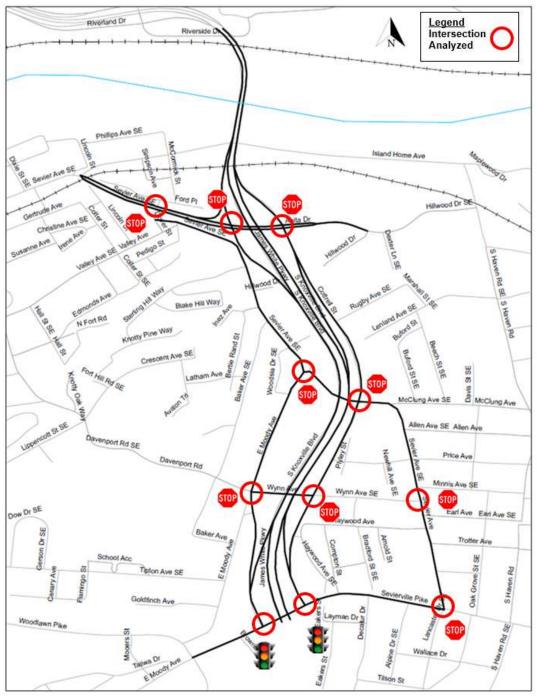


FIGURE 9: JAMES WHITE PARKWAY STUDY INTERSECTIONS

Table 7 through **Table 8** summarizes the traffic analysis. The LOS are reported for the entire intersection and for each approach with the maximum volume to capacity ratio. The years 2020 and 2040 AM and PM Peak Hours were analyzed.

Table 7 summarizes the 2020 No Build Alternative. For all study intersections, the overall LOS is B or better. A few approaches operate at a LOS C, but the delay is less than 22 seconds and is considered to have minimal delay overall. Therefore, under existing conditions, all intersections operate satisfactorily.

Table 8 summarizes the 2040 No Build Alternative. For all study intersections, the overall LOS is C or better with the exception of two study intersections. In the PM peak hour, the Sevierville Pike at James White Parkway Off Ramp intersection operates at a LOS E with the eastbound approach failing at a LOS F. This approach is a single lane with over 900 vehicles in the peak hour. In addition, the Sevierville Pike at Sevier Avenue/Lancaster Drive intersection is an all-way stop intersection that operates at a LOS C in the AM peak hour and a LOS D in the PM peak hour. The higher delay can be associated with the heavy AM westbound movement and heavy PM eastbound movement.

The Traffic Analysis Technical Memorandum is provided in **Appendix D**.

TABLE 7: TRAFFIC ANALYSIS - 2020 NO BUILD ALTERNATIVE

				AM						PM			
Churchy Asso Indonesation	Intersection	Overa Intersec		EB	WB	NB	SB	Overa Intersec		EB	WB	NB	SB
Study Area Intersection	Control Type	LOS	Max	LOS				LOS	Max	LOS			
	Турс	Delay (s)	v/c		Dela	<i>y (</i> s)		Delay (s)	v/c		Dela	<i>y (</i> s)	
101: Sevier Avenue & Anita Drive	TWSC	A 5.3	0.343	A 0.4	A	B 13.5	C 15.9	A 5.4	0.285	A 0.1	A 4.2	B 13.9	C 17.4
-						13.3	13.9 B					13.9	17.4 B
102: Anita Drive & James White Parkway SB Ramp	TWSC	A 4.9	0.255	A	A	<u>-</u>	10.2	A 6.5	0.306	A	A 2.1	-	10.5
103: Cottrell Street & Anita		В		В	В	В	_	Α		Α	Α	Α	_
Drive	AWSC	10.8	0.354	10.6	11.0	11.0	-	9.5	0.273	9.4	9.6	9.7	-
104: E. Moody Avenue &	T14/00	Α	0.050	-	Α	Α	Α	Α	0.047	-	Α	Α	Α
Sevier Avenue	TWSC	4.7	0.058	-	9.2	0.0	3.4	5.1	0.047	-	9.3	0.0	5.0
105: Cottrell Street & Sevier	AWSC	Α	0.226	Α	Α	Α	-	Α	0.122	Α	Α	Α	-
Avenue	AVV3C	7.9	0.220	7.9	7.8	8.0	-	7.5	0.122	7.7	7.3	7.8	-
106: E. Moody Avenue &		Α		Α	Α	Α	Α	Α		Α	Α	Α	Α
Davenport Road/Wynn Avenue	AWSC	8.0	0.143	7.5	8.4	7.8	8.0	<i>7.</i> 8	0.196	7.8	7.6	7.8	7.7
107: Cottrell Street & Wynn	TWSC	Α	0.107	Α	Α	Α	-	Α	0.101	Α	Α	Α	-
Avenue	10050	8.0	0.107	9.9	9.6	0.0	-	6.8	0.101	9.6	9.2	0.0	-
108: Sevier Avenue & Wynn	TWSC	Α	0.059	Α	-	Α	Α	Α	0.05	Α	-	Α	Α
Avenue	10030	2.3	0.039	9.4	-	2.0	0.0	2.4	0.03	9.2	-	1.3	0.0
109: Sevierville Pike & James	Signal	В	0.600	В	Α	-	В	В	0.750	С	Α	-	В
White Pkwy Off-Ramp	Signal	13.5	0.000	16.5	8.4	-	11.7	17.0	0.730	21.6	9.7	-	15.0
110: Sevierville Pike & James	Signal	Α	0.480	Α	Α	-	-	Α	0.390	Α	Α	-	-
White Pkwy Ramps	Oigilai	2.6	5.100	2.1	3.3	-	-	1.0	5.000	0.8	1.8	-	-
111: Lancaster Drive/Sevier	AWSC	В	0.502	Α	В	Α	Α	В	0.613	С	В	Α	Α
Avenue & Sevierville Pike	/(000	10.9	0.002	9.2	12.4	9.8	8.9	12.8	0.010	15.2	10.6	9.8	9.7

TABLE 8: TRAFFIC ANALYSIS - 2040 NO BUILD ALTERNATIVE

		AM							PM				
Or all Association	Intersection	Overa Intersec		EB	WB	NB	SB	Overa Intersed		EB	WB	NB	SB
Study Area Intersection	Control Type	LOS	Max		LC	os		LOS	Max			os	
	Турс	Delay (s)	v/c		Dela	y (s)	1	Delay (s)	v/c		Dela	<i>y (</i> s)	
101: Sevier Avenue & Anita Drive	TWSC	A 7.7	0.572	A 0.4	A 2.0	C 20.8	C 22.4	A 7.5	0.522	A 0.1	A 4.4	C 22.7	D 26.6
102: Anita Drive & James		Α		A	A	-	В	A		Α	Α		B
White Parkway SB Ramp	TWSC	5.9	0.378	0.0	1.3	-	12.5	8.0	0.434	0.0	2.1	-	13.1
103: Cottrell Street & Anita		С		В	С	С	-	В		В	В	В	-
Drive	AWSC	15.3	0.602	13.6	15.1	17.6	-	12.3	0.515	13.3	10.8	11.8	-
104: E. Moody Avenue &	TWSC	Α	0.082	•	Α	Α	Α	Α	0.069	-	Α	Α	Α
Sevier Avenue	TWSC	4.8	0.082	-	9.6	0.0	3.4	5.2	0.069	-	9.8	0.0	5.0
105: Cottrell Street & Sevier	AWSC	Α	0.312	Α	Α	Α	-	Α	0.169	Α	Α	Α	-
Avenue	AWSC	8.5	0.312	8.2	8.6	8.4	-	7.9	0.169	8.0	7.7	8.0	-
106: E. Moody Avenue &		Α		Α	Α	Α	Α	Α		Α	Α	Α	Α
Davenport Road/Wynn Avenue	AWSC	8.5	0.202	8.0	9.0	8.4	8.5	8.3	0.273	8.5	7.9	8.2	8.1
107: Cottrell Street & Wynn	TWSC	Α	0.147	В	Α	Α	-	Α	0.141	В	Α	Α	_
Avenue	10050	8.3	0.147	10.4	9.9	0.0	-	7.0	0.141	10.0	9.4	0.0	-
108: Sevier Avenue & Wynn	TWSC	Α	0.087	Α	-	Α	Α	Α	0.072	Α	-	Α	Α
Avenue	17750	2.4	0.007	9.9	-	2.1	0.0	2.4	0.072	9.6	-	1.3	0.0
109: Sevierville Pike & James	Signal	В	0.81	С	В	-	В	Е	1.14	F	В	-	С
White Pkwy Off-Ramp	2.9	18.9	0.0.	24.1	15.3	-	14.1	57.3		104.1	12.0	-	32.1
110: Sevierville Pike & James	Signal	Α	0.63	Α	В	-	-	A	0.52	Α	A	-	-
White Pkwy Ramps	2.9	9.3	3.33	4.1	15.9	-	-	1.8	3.32	0.9	4.8	-	-
111: Lancaster Drive/Sevier	AWSC	C 10.5	0.741	В	C	B	B	D 07.0	0.918	E	В	B	В
Avenue & Sevierville Pike		16.5		11.0	21.5	11.9	10.4	27.3		40.2	14.6	12.0	11.9

EXISTING MAJOR STRUCTURES AND BRIDGES

Seven (7) structures are located within the project limits. Table 9 below shows the structural details. All structures were evaluated to be in good condition.

TABLE 9: EXISTING STRUCTURES AND BRIDGES

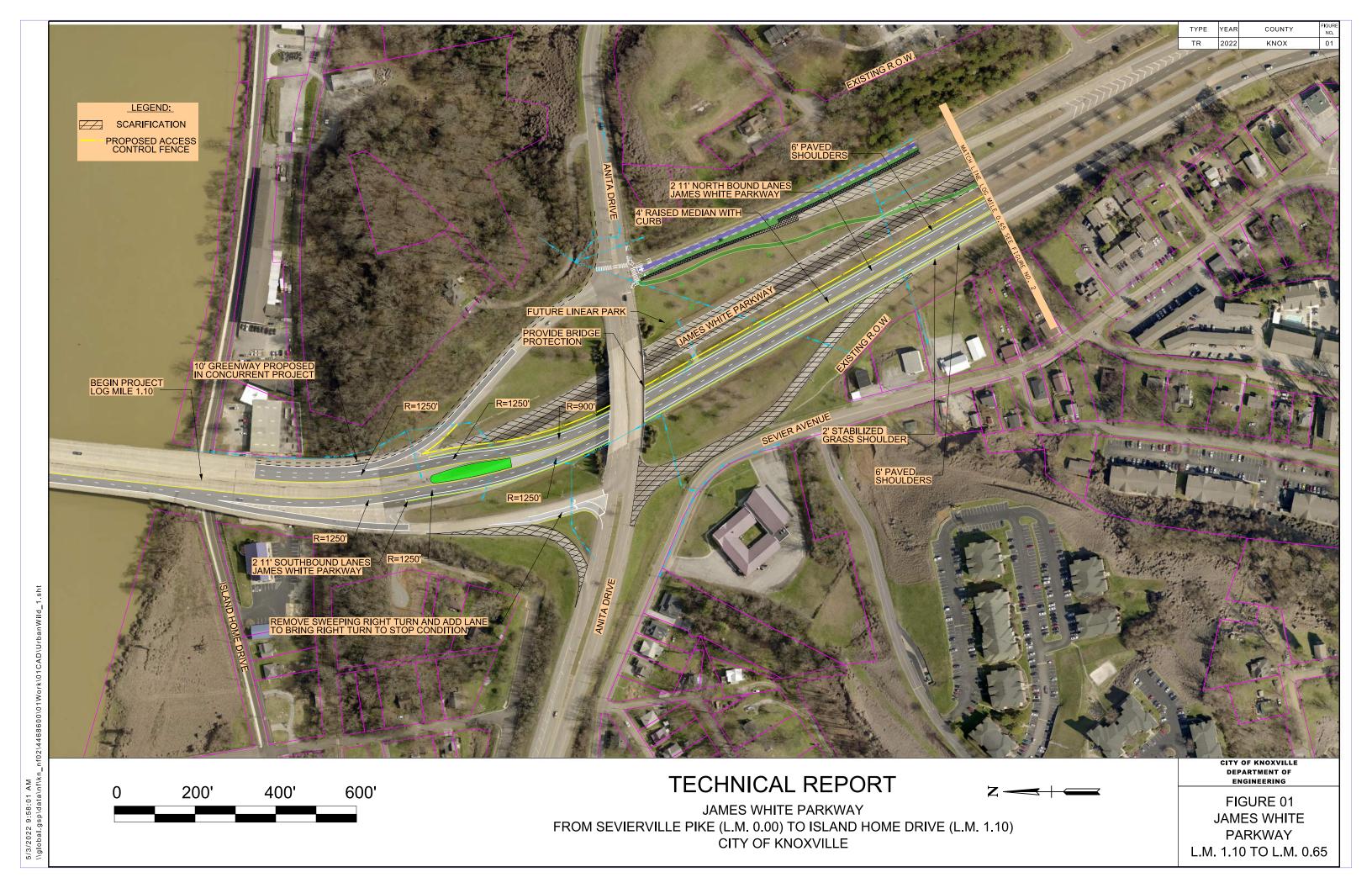
Route	Crossing	Log Mile	Structure #	Type*	Length (ft) (Max Span (ft))	Sufficiency Rating	Verticle Clearance	Condition				
Moody Avenue	James White Parkway	1.20	47000710009	СС	220 (118)	96.80	16' - 00"	Good				
Wynn Avenue	James White Parkway	1.01	47000710011	СС	242 (121)	78.40	18' - 02"	Good				
James White Parkway	Sevier Avenue	0.53	47000710013	PC	110 (105)	96.00	16' - 09"	Good				
James White Parkway	Sevier Avenue	0.53	47000710014	PC	110 (105)	97.00	17' - 03"	Good				
Sevier Avenue	James White Parkway	0.43	47000710015	СС	255 (130)	99.00	16' - 08"	Good				
Baker Creek	-	-	47000710019	Box Culvert	1 @ 18'	-	-	Good				
Baker Creek	-	-	47000710021	Box Culvert	2 @ 8'	-	-	Good				
	*Note: PC = Prestressed Concrete, CC = Continuous Concrete											

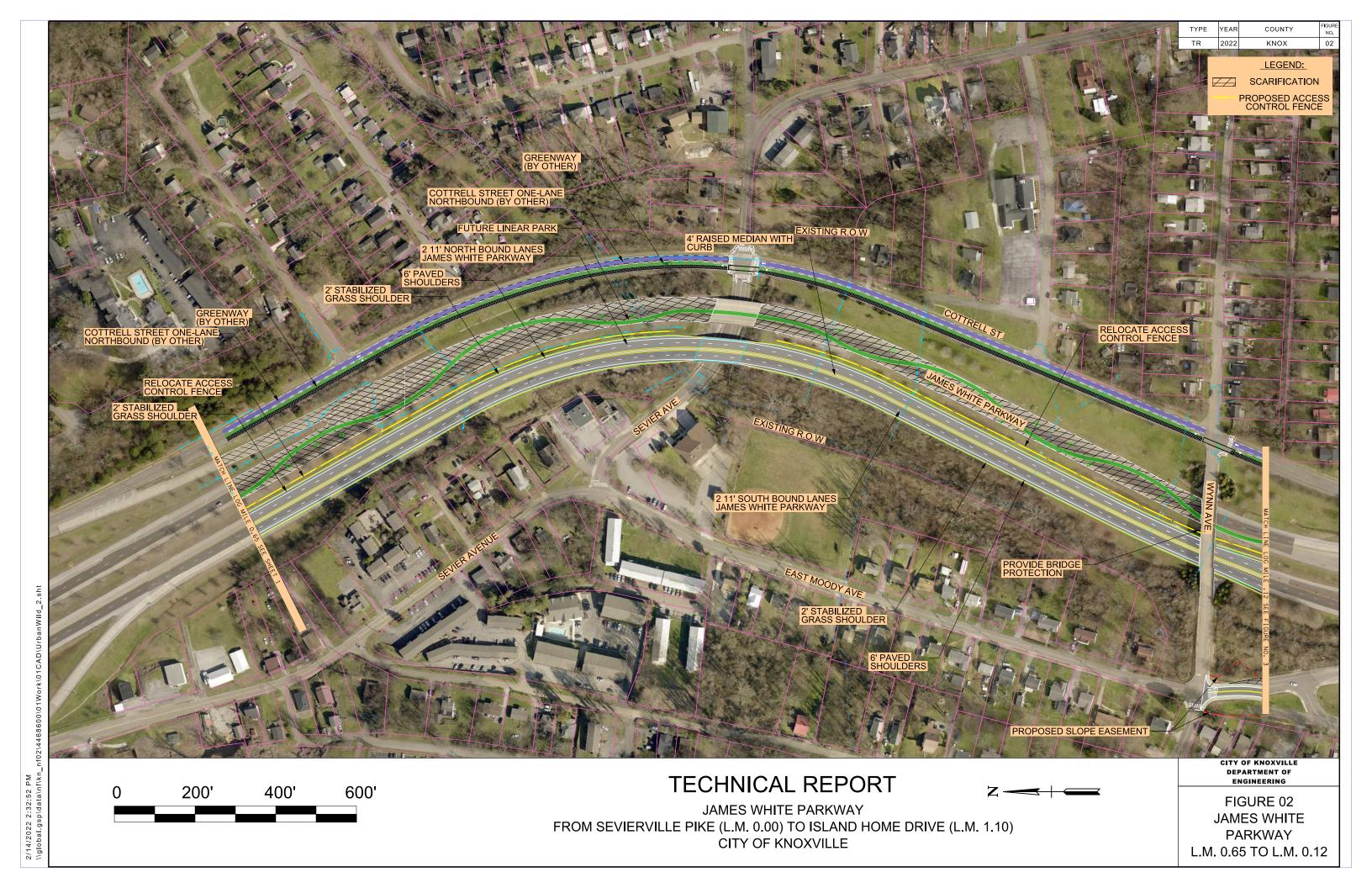
3.6 FIELD REVIEW

A field review was held for the project on December 4, 2020. Representatives from the City of Knoxville, Knoxville-Knox County Planning, TDOT Strategic Transportation Investments Division (STID), and TDOT Region 1 were in attendance. The draft conceptual plans were discussed and reviewed. Documentation of the field review is provided in **Appendix E**.

4.0 PURPOSE AND NEED FOR IMPROVEMENTS

James White Parkway is currently an underutilized four-lane urban freeway that serves only motorists. The purpose of the proposed James White Parkway Corridor Project is to convert the existing facility into a multi-modal gateway linking neighborhoods throughout South Knoxville and Downtown to the Urban Wilderness park system. Excess motorist capacity along James White Parkway will be transitioned to serve bicyclists and pedestrians along an urban parkway corridor. Additional information concerning Knoxville's Urban Wilderness can be found in Section 2.1.1 of this report and on the City's website at https://www.visitknoxville.com/urban-wilderness/ .

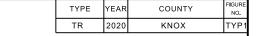

The proposed project is needed to fit the City's vision for the Urban Wilderness while maintaining the corridor's viability as an alternate route for Chapman Highway. The proposed project will provide similar capacity as the existing facility while modifying it to a parkway corridor, fitting its urban and residential context. The proposed project will create a destination area for people to travel, enjoy, and spend more time and invest in area businesses. With no future plans to extend the current James White Parkway freeway facility, its current condition would remain as a dead end at Sevierville Avenue.

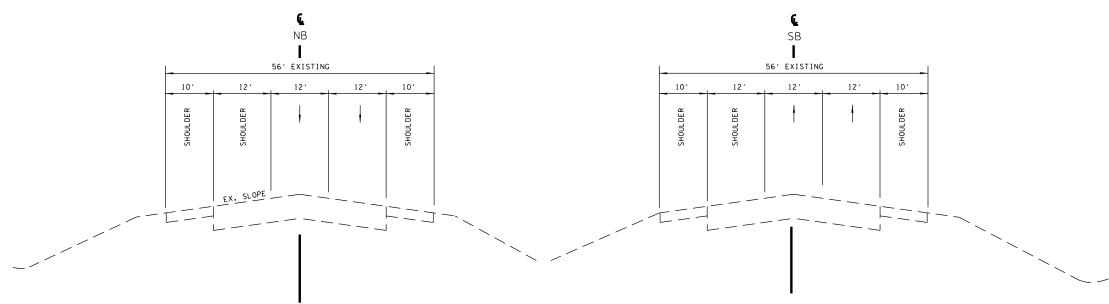

The proposed project will consolidate the motor vehicle traffic along the southbound side of the corridor and provide pedestrian and bicycle connections on the northbound side. The proposed project will serve as a multi-modal gateway linking neighborhoods throughout South Knoxville and Downtown to the Urban Wilderness Park.

5.0 PROPOSED ALTERNATIVE

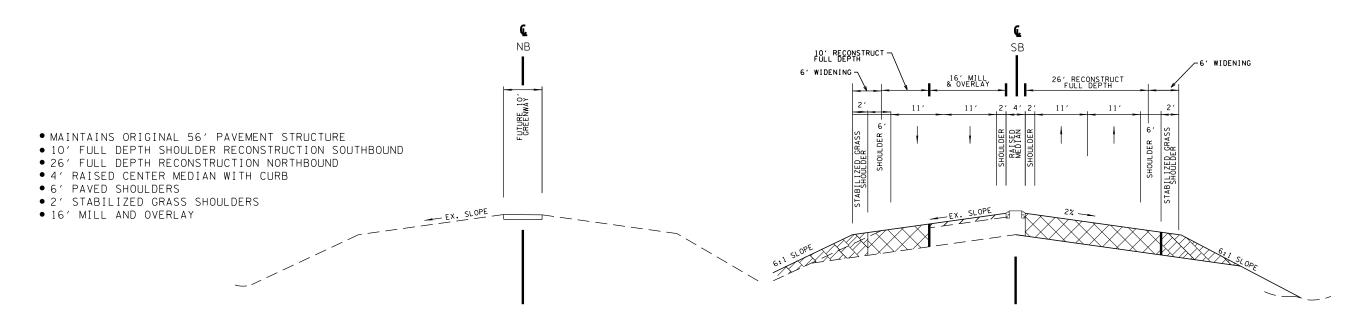
The Proposed Alternative shown on the following pages addresses the purpose and need of the project. The Proposed Alternative accommodates two-way travel on the western portion of James White Parkway and the new access to Urban Wilderness Gateway Park. James White Parkway will be realigned at the southern terminus to provide a direct connection with Sevierville Pike, which will connect to Chapman Highway. This substitutes for the original intent of James White Parkway to connect to Chapman Highway. A clear separation is intended between motor vehicle and pedestrian traffic with the consolidation of the motor vehicle traffic on the existing James White Parkway southbound lanes and a linear park on the existing northbound lanes. Four (4) access points are being removed which include the southbound On-ramp at Anita Drive, the northbound Off-ramp at Anita Drive, the southbound On-Ramp from Moody Avenue and the northbound Onramp at Sevierville Pike. A new access break location is proposed for the entrance to the park. The net change in access points has been reduced by three (3) but the City will need to work through Excess Land to shift the access break to the new location shown in the functional layouts. In order to reduce potential conflicts with pedestrians and bicyclists, the right turn slip lane on the southbound Off-Ramp at Anita Drive is to be removed and will be realigned with the existing intersection location. Also, motor vehicle traffic entering and exiting the Urban Wilderness Gateway Park parking area will have access to James White Parkway just south of the Wynn Avenue overpass bridge. This proposed intersection will include an acceleration lane to create a two-stage movement for left turning traffic exiting the Urban Wilderness Gateway Park parking area. This intersection may require additional analysis in the future to determine if traffic volumes and/or safety concerns warrant a traffic signal.

The proposed typical section on James White Parkway would consist of two-eleven (11) foot lanes in both northbound and southbound directions, two (2) foot inside shoulders, a four (4) foot raised median, and six (6) foot paved outside shoulders with two (2) foot grass shoulder. The consolidation of both directions of James White Parkway required a reduction in shoulder width to maintain the existing right-of-way through the corridor. The outside shoulder will provide eight (8) foot stabilized shoulder for emergency pull off. The proposed typical has been accepted by the City and TDOT and will require a Design Exception form to be executed during the design phase. The posted speed limit proposed for the corridor is 35 mph.



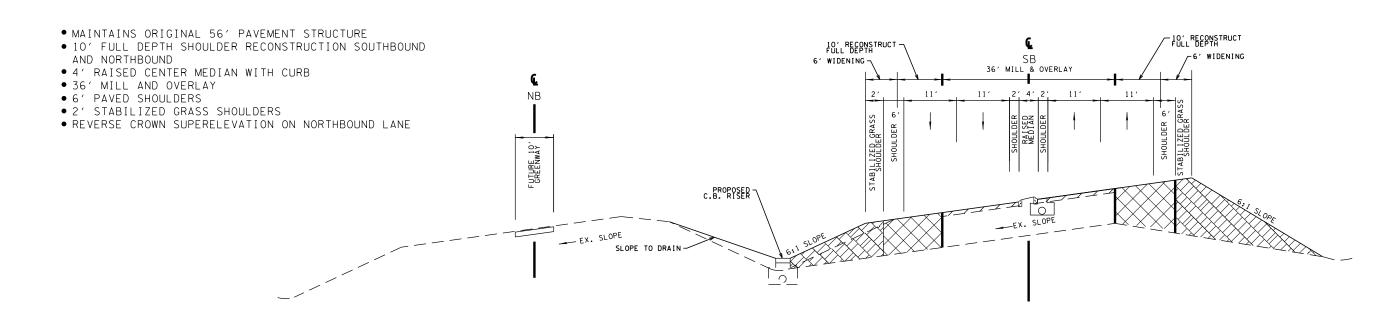


CITY OF KNOXVILLE


PARKWAY

L.M. 0.12 TO L.M. 0.00

EXISTING TANGENT SECTION

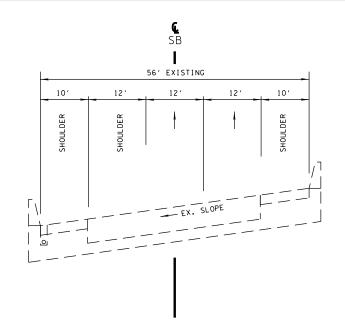

PROPOSED TANGENT SECTION

CONCEPTUAL TYPICAL SECTIONS

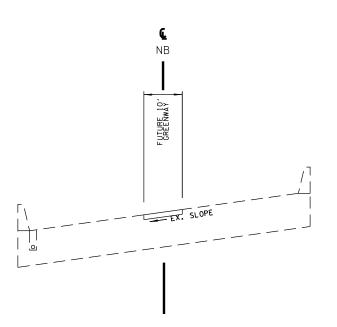
CITY OF KNOXVILLE
HOUSING AND NEIGHBORHOOD
DEVELOPMENT DEPARTMENT

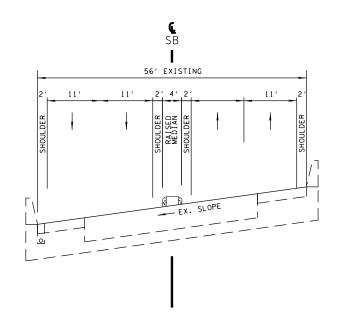
JAMES WHITE
PARKWAY
CONCEPTUAL PLANS

EXISTING SUPER ELEVATION SECTION



PROPOSED SUPER ELEVATION SECTION


CONCEPTUAL TYPICAL SECTIONS


CITY OF KNOXVILLE
HOUSING AND NEIGHBORHOOD
DEVELOPMENT DEPARTMENT

JAMES WHITE
PARKWAY
CONCEPTUAL PLANS

EXISTING BRIDGE OVER SEVIER AVENUE TYPICAL SECTION

PROPOSED BRIDGE OVER SEVIER AVENUE TYPICAL SECTION

CONCEPTUAL TYPICAL SECTIONS

CITY OF KNOXVILLE
HOUSING AND NEIGHBORHOOD
DEVELOPMENT DEPARTMENT

JAMES WHITE
PARKWAY
CONCEPTUAL PLANS

5.1 PROPOSED ALTERNATIVE COST

The estimated planning level cost for construction is \$11,200,000, right-of-way (ROW) is \$595,000, Utilities is \$356,00, and preliminary engineering is \$1,030,000 for the Proposed Alternative for a total cost estimate of \$13,200,00. See **Appendix A** for detailed itemization of cost estimates and inflated cost estimate summary.

5.2 PROPOSED ALTERNATIVE TRAFFIC ANALYSIS

5.2.1 Projected Traffic Volumes

Section 3.2 details the primary sources utilized in the James White Parkway Urban Wilderness Corridor Study traffic projections. The traffic projections assumed a 1.5 percent annual growth in traffic, consistent with the Knoxville Transportation Planning Organization's Travel Demand Model. The traffic projection calculations for the proposed alternative utilized the balanced No Build volumes to account for two-way travel on the western portion of James White Parkway and the new access to Urban Wilderness Gateway Park at the south end of the corridor and are shown in **Appendix C**.

5.2.2 Level of Service Analysis (Proposed Alternative)

The Proposed Alternative is shown in the conceptual plans in Section 5.0. Traffic analysis was performed in Synchro and HCS. The results are shown in **Table 10** and **Table 11**. The Traffic Analysis Technical Memorandum is provided in **Appendix D**.

TABLE 10: MULTILANE ROADWAY ANALYSIS

	1A	М	PM		
Travel Direction	Density (pc/mi/ln)	LOS	Density (pc/mi/ln)	LOS	
Northbound	14.5	В	8.9	А	
Southbound	7.6	А	15	В	

TABLE 11: TRAFFIC ANALYSIS - 2040 PROPOSED ALTERNATIVE

	IAB	LL III. IIXA	E 11: TRAFFIC ANALYSIS - 2040 PROPOSED A										
			AM					PM		1			
Objects Association	Intersection		Overall Intersection		WB	NB	SB	Overa Intersed		EB	WB	NB	SB
Study Area Intersection	Control	LOS	LOS Max		LC	os		LOS	Max		LOS		
	Туре	Delay (s)	v/c		Dela	y (s)		Delay (s)	v/c		Dela	ay (s)	
101: Sevier Avenue & Anita	TWO	Α	0.505	Α	Α	С	С	Α	0.544	Α	Α	С	D
Drive	TWSC	8.2	0.595	0.4	2.3	22.3	23.7	7.9	0.544	0.1	4.7	24.3	28.4
102: Anita Drive & James	TWO	Α	0.004	Α	Α	1	В	Α	0.401	Α	Α	-	В
White Parkway SB Ramp	TWSC	5.9	0.394	0.0	0.0	-	12.5	8.0	0.401	0.0	0.0	-	12.9
103: Cottrell Street & Anita	AWSC	С	0.602	В	С	С	-	В	0.515	В	В	В	-
Drive	AWSC	15.3	0.602	13.6	15.1	17.6	-	12.3	0.515	13.3	10.8	11.8	-
104: E. Moody Avenue &	TWSC	Α	0.087	_	Α	Α	Α	Α	0.073	-	В	Α	Α
Sevier Avenue	10030	4.0	0.067	-	9.8	0.0	2.2	4.1	0.073	-	10.1	0.0	3.4
105: Cottrell Street & Sevier	A)A/CC	Α	0.333	Α	Α	Α	-	Α	0.172	Α	Α	Α	-
Avenue	AWSC	9.0	0.333	8.6	9.2	9.0	-	8.0	0.172	8.1	7.7	8.2	-
106: E. Moody Avenue &		Α		Α	Α	Α	Α	Α		Α	Α	Α	Α
Davenport Road/Wynn Avenue	AWSC	8.9	0.253	8.2	9.3	8.6	9.2	8.7	0.285	8.9	8.1	8.3	8.7
107: Cottrell Street & Wynn	TWSC	Α	0.037	Α	Α	Α	-	Α	0.034	Α	Α	Α	-
Avenue	10030	1.0	0.037	3.4	0.0	0.0	-	1.5	0.034	3.2	0.0	0.0	-
108: Sevier Avenue & Wynn	TWSC	Α	0.134	В	-	Α	Α	Α	0.076	В	-	Α	Α
Avenue	10030	4.4	0.134	11.8	-	5.7	0.0	3.5	0.076	10.2	-	3.7	0.0
109: Sevierville Pike & James	Signal	С	0.81	_	С	С	В	С	0.83	_	С	С	С
White Pkwy	Signal	23.1	0.61	-	20.4	27.7	19.5	23.7	0.63	-	30.1	21.5	23.7
111: Lancaster Drive/Sevier	AWSC	С	0.715	В	С	В	В	D	0.918	E	В	В	В
Avenue & Sevierville Pike	AVVOC	15.6	0.710	11.0	19.7	11.8	10.4	26.8	0.310	39.6	13.9	11.9	11.8
112: James White		Α		-	В	Α	Α	Α			В	Α	Α
Pkwy/James White Pkwy & Proposed Park Connection	TWSC	0.0	0.002	-	12.7	0.0	0.0	0.1	0.007	-	10.7	0.0	0.1

6.0 ENVIRONMENTAL IMPACTS

The project proposes to utilize the existing roadway network for the improvements along the corridor. The Flood Map shown in **Figure 10** below identifies that the corridor is outside the 100-year flood elevation. A stream runs along the west side of the study corridor on the southern half of the project named Bakers Creek. Any encroachment or disturbance on the stream will require permitting.

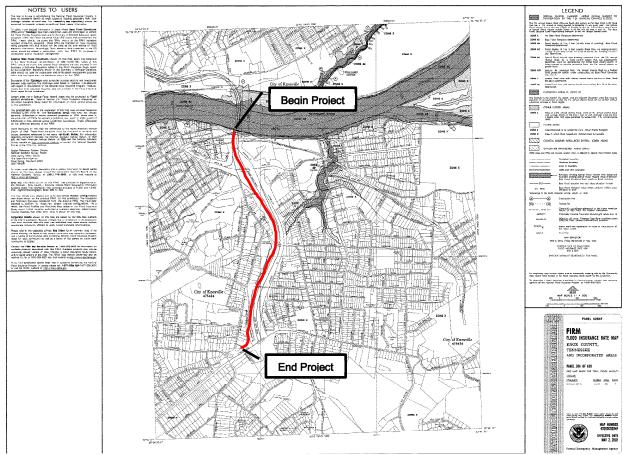


FIGURE 10: FLOOD MAP

7.0 ASSESSMENT OF PROPOSED ALTERNATIVE

7.1 TDOT SEVEN GUIDING PRINCIPLES

 Preserve and Manage the Existing Transportation System – The proposed project is converting the urban freeway into a local, multimodal corridor that is in context with its surroundings. With the conversion, the roadway will maintain the access control and lane capacity of the existing corridor. James White Parkway will be realigned at the southern terminus to provide a direct connection with Sevierville Pike, which will

- connect to Chapman Highway. This substitutes for the original intent of James White Parkway to connect to Chapman Highway.
- 2. Move a Growing, Diverse, and Active Population The goal of this project is to reduce the footprint of the motor vehicle traffic to develop a linear park system to promote active transportation within the area.
- 3. Support the State's Economy The proposed project goal is to provide similar capacity at the same time modifying the facility to fit its urban, residential, context. The proposed project is creating a destination area for people to travel, enjoy, and spend more time and invest in area businesses.
- 4. Maximize Safety and Security Access control will be maintained along the corridor and four (4) access points are being removed. A clear separation is intended between motor vehicle and pedestrian traffic with the consolidation of the motor vehicle traffic on the existing James White Parkway southbound lanes and a linear park on the existing northbound lanes.
- 5. Build Partnerships for Livable Communities The proposed project creates an active transportation facility that the existing freeway does not provide.
- 6. Promote Stewardship for the Environment The goal of the project is to create a route that travels through a scenic park area. The proposal of grass shoulders on the project was done to limit the amount of asphalt while still providing the safety of shoulders along the corridor.
- 7. Emphasize Financial Responsibility The project will reduce the footprint of the corridor and the alternatives proposed are taking measure to utilize the existing infrastructure to maintain a fiscally responsible project.

8.0 SUMMARY

This Technical Report along with its Appendices demonstrate that the proposed project provides an acceptable Level of Service through the design year of 2040 and provides a means for multimodal accommodations for the community. The proposed design alternative appropriately addresses the purpose and need of converting the one-mile segment of James White Parkway between Anita Drive and Sevierville Pike from its existing condition of an urban freeway to a multimodal city street corridor while maintaining safe and efficient travel for all users.

Appendix

Appendix A: Cost Estimate

Appendix B: Technical Memorandum – Exising Traffic Counts

Appendix C: Technical Memorandum – Traffic Data and Projection Summary

Appendix D: Technical Memorandum – Traffic Analysis

Appendix E: Field Review Documentation

Δ	P	P	P	F	N	D	IX	Δ
~			_	_	w	u		_

Cost Estimate

COST ESTIMATE SUMMARY

Route: SR 71 - James White Parkway

Termini: From TN River Bridge to the termini at Sevierville Pike

Scope of Work:

Project Type of Work: Widen
County: Knox

Length: 1.49 Miles
Date: February 22, 2022

Estimate Type: Concept

DESCRIPTION	LOCAL	STATE	FEDERAL	TOTAL
DESCRIPTION	0%	0%	0%	IOIAL
Construction Items				
Removal Items	\$0	\$0	\$0	\$632,000
Asphalt Paving	\$0	\$0	\$0	\$1,080,000
Concrete Pavement	\$0	\$0	\$0	\$551,000
Drainage	\$0	\$0	\$0	\$1,030,000
Appurtenances	\$0	\$0	\$0	\$354,000
Structures	\$0	\$0	\$0	\$1,720,000
Fencing	\$0	\$0	\$0	\$75,500
Signalization & Lighting	\$0	\$0	\$0	\$250,000
Railroad Crossing	\$0	\$0	\$0	\$0
Earthwork	\$0	\$0	\$0	\$973,000
Clearing and Grubbing	\$0	\$0	\$0	\$61,000
Seeding & Sodding	\$0	\$0	\$0	\$31,700
Rip-Rap or Slope Protection	\$0	\$0	\$0	\$112,000
Guardrail	\$0	\$0	\$0	\$81,300
Signing	\$0	\$0	\$0	\$14,100
Pavement Markings	\$0	\$0	\$0	\$18,800
Maintenance of Traffic	\$0	\$0	\$0	\$148,000
Mobilization 5%	\$0	\$0	\$0	\$357,000
Other Items and Annual Inflation 10%	\$0	\$0	\$0	\$749,000
Const. Contingency (Structures Not Included) 30%	\$0	\$0	\$0	\$1,960,000
Const. Eng. & Inspec. 10%	\$0	\$0	\$0	\$1,020,000
Construction Estimate	\$0	\$0	\$0	\$11,200,000
Interchanges & Unique Intersections				
Roundabouts	\$0	\$0	\$0	\$0
Interchanges	\$0	\$0	\$0	\$0
Right-of-Way & Utilties	LOCAL	STATE	FEDERAL	TOTAL
	0%	0%	0%	
Right-of-Way	\$0	\$0	\$0	\$595,000
Utilities	\$0	\$0	\$0	\$356,000
Preliminary Engineering	LOCAL 0%	STATE 0%	FEDERAL 0%	TOTAL
Prelim. Eng. 9.1%	\$0	\$0	\$0	\$1,030,000
Total Project Cost (2021)	\$ -	\$ -	\$ -	\$ 13,200,000

COST ESTIMATE TOOL - 2021

Project Cost Summary									
Description	Estimate	Contingency							
Construction:	\$ 11,200,000	30%							
Right-of-Way:	\$ 595,000								
Utility Relocation:	\$ 356,000								
Interchanges & Roundabouts:	\$ -								
Preliminary Engineering:	\$ 1,030,000								
Construction Engineering:	\$ 1,020,000	10%							
Total Estimated Project Cost:	\$ 13,200,000								

Additional Specifications	
Graded Solid Rock:	Moderate
Number of Traffic Signals:	
Length of ITS Installation:	
Include Tool Generated Guardrail Quantities?	Yes

	Notifications
Roadway:	No Errors
Median:	No Errors
Right-of-Way:	No Errors
Contingency:	
General:	No Errors

Construction Estimate							
Category	Cost	Contribution					
Pavement Removal	\$ 632,000	8.86					
Asphalt Paving	\$ 1,080,000	15.14					
Concrete Pavement	\$ 551,000	7.73					
Drainage	\$ 1,030,000	14.44					
Appurtenances	\$ 354,000	4.96					
Structures	\$ 1,720,000	24.12					
Fencing	\$ 75,500	1.06					
Signalization	\$ 250,000	3.51					
RR X or Seperation	\$ -	0.00					
Earthwork	\$ 973,000	13.64					
Clear & Grub	\$ 61,000	0.86					
Seeding & Sodding	\$ 31,700	0.44					
Rip-Rap or Slope Prot.	\$ 112,000	1.57					
Guardrail	\$ 81,300	1.14					
Signing	\$ 14,100	0.20					
Pavement Markings	\$ 18,800	0.26					
Maint. of Traffic	\$ 148,000	2.08					
Mobilization (5%)	\$ 357,000						
Other Items (25%)	\$ 749,000						
Contingency	\$ 1,960,000						
Total:	\$ 11,200,000						

	Pavement Ca	alculator							
Area (SQFT):									
TRAVELED-WAY									
415-01.02	COLD PLANE	SqYd =	0.0	<- Resurfacing					
Item #	Description	Thickness (in)	Tons						
411-03.10	"D" mix	6	0.0	<- Resurfacing					
403-01	1st Layer - Tack	N/A	0.0	<- Resurfacing					
307-02.08	"BM-2" mix	2	0.0						
403-01	2nd Layer - Tack	N/A	0.0						
307-02.01	"A" mix	3.5	0.0						
403-01	3rd Layer - Tack	N/A	0.0						
307-02.21	GR "A-S" Mix	3	0.0						
402-01	Prime Coat	N/A	0.0						
402-02	Agg. Cover	N/A	0.0						
	Base Stone	6	0.0						
	SHOULDI	ERS							
Area (SQFT):									
Item #	Description	Thickness	Tons						
411-01	"E" mix	1.5	0.0						
403-01	Tack	N/A	0.0						
307-02.08	"BM-2" mix	2	0.0						
402-01	Prime Coat	N/A	0.0						
402-02	Agg. Cover	N/A	0.0						
303-01	Base Stone	20.25	0.0						

Project Location and Termini

Location Information								
Route:	R 71 - James White Parkway	Project Begin (mi):	0.000					
County:	Knox	,	0.000					
Unit Prices:	Statewide	Project End (mi):	1.489					
PIN:	129840.00	Project End (ini).	1.409					

ROADWAY DESIGN

	INPUT ROAD SEGMENT CHARACTERISTICS													
	PAVEMENT									ROADSIDE DESIGN TERRAIN				
		Const	truction Estimate:	\$ 11,200,000	How N	Nany Segments (1-30)?	7		Sidewalk Width (ft):	6				
		Total Estima	ated Project Cost:	ect Cost: \$ 13,200,000		nany segments (1-50):	,		Grass Strip Width (ft):	2.5				
			Pavement Design	Proposed Full Depth	Outside Shldr Width		Replace Existing Full	Rural or Urban	Urban Drainage on	Sidewalk on One		Widen to One		
Segment	Begin (mi)	End (mi)	(ft)	Pavement Width (ft)	(ft)	Existing Pavement Width	Depth Pavement?	Drainage	one side or both?	Side or Both Sides	Terrain Type	Side or Both?	Foreslope H:V Rate	
1	0.000	0.161	Arterial	44	0	0	No	Urban/C&G	Both Sides	None	Mountainous	Both Sides	3H:1V	
2	0.161	0.691	Arterial	44	6	56	No	Rural/Ditch	Both Sides	None	Flat	Both Sides	6H:1V	
3	0.691	1.202	Arterial	44	6	56	Yes	Rural/Ditch	Both Sides	None	Flat	Both Sides	6H:1V	
3 4	0.691 1.202	1.202 1.259	Arterial Concrete	44 16	6 8	56 16	Yes No	Rural/Ditch Rural/Ditch	Both Sides Both Sides	None None	Flat Flat	Both Sides One Side	6H:1V 6H:1V	
3 4 5				44 16 56	6 8 0	56 16 56								
3 4 5	1.202	1.259	Concrete	16	6 8 0	16	No	Rural/Ditch	Both Sides	None	Flat	One Side	6H:1V	

			•						
					MEDIAN INPUTS				
		How Many Segments (1-20)?							
					# Travel Lanes in Each				
	Segments	Begin (mi)	End (mi)	Median Type	Direction	Terrain Type	Inside Shldr. Width (ft)	Interior Width (ft)	
				Raised Median (RD11-TS-					
i		0.000	1.142	6)	2	Flat	0	14	

Pavement Removal				
AREA OF PAVEMENT REMOVAL (SF)				
Asphalt:				
Concrete:				

Concrete Islands				
Total Conce	ete Island Area (SF)			
SQFT:				

Terra	Terrain Assumptions						
Terrain Type	Cut/Fill Depth	Foreslope Rate					
Flat (1 - 3ft):		6H:1V					
Rolling (4 - 7 ft):		4H:1V					
Mountainous (8 - 11 ft):		3H:1V					
Heavy Moutainous (12 - 25 ft):		2H:1V					

	Shared Use Path							
Terrain Type	Length (mi)	Grass Strip Width (ft)	Pav Width (8 - 12 ft)					
Flat :								
Rolling:								
Mountainous:								
Heavy Mountainous:								

BRIDGES AND STRUCTURES

	Structure Removal						
	How Many (1-20)? 2						
Number	Length	Туре					
1	152.0	10.0	Box				
2	320.0	17.0	Box				

	New Structures						
	How Many (1-20)						
Number	Length	Width	Туре	Feature Crossed / No Spans			
1	170.0	10.0	Box				
2	320.0	18.0	Box				
3	120.0	16.0	Steel				

	Structure Rehabiltation & Widenings							
	How Many (1-20)?							
Number	Number Length (ft) Width (ft) Type Add'l Width Bridge Location							
1								

Retaining Walls					
Average Height:	6				
Total Length:	250				

RIGHT-OF-WAY AND UTILTIES

Utility R	Utility Relocation			
	rhead			
Distribution (mi):				
Transmission (mi):				
	ground			
Power (mi):				
Water (mi):	0.15			
Gas (mi):				
Comm. (mi):				
Sewer (mi):	0.15			

Additional ROW & Utilities Cost			
Right-of-Way:			
Utilities:			

	Right-of-Way Properties							
	Enter Segments (1-20):							
Segments	Begin	End	Land Use	Existing Width	Proposed Width (ft)			
1	0.000	0.161	Resdential	200	230			
2	0.161	0.691	Resdential	420	420			
3	0.691	1.202	Resdential	420	420			
4	1.202	1.259	Resdential	420	420			
5	1.259	1.309	Resdential	420	420			
	4 300	4 200	Donato at al		50			

PAY ITEM SUMMARY

## Control Florida ## Parameter Florida ##					ADDITIONAL	TOOL QUANTITIES +	J. J		
Parment Removal REMOVED CF ASTRUCT PROPERTY ST. 1940 1370 47660 \$ 1.315 \$ 1.325	TDOT PAY ITEM	TDOT DESCRIPTION	UNIT	TOOL QUANTITIES	QUANTITIES	QUANTITIES	UNIT COST		TOTAL COST
Payment Removal									< Unit Cost Trends with
200-810 BRANDONE, DE ASSAME TRANSPORTE CLASS A CONCRETE ROUTING UP 100 1700 2700									Quantities
### ### ### ### ### ### ### ### ### ##					I		T.		
Asin				15960					548,091.6
Aghain hoods MINIONAL ACCIDITION THE A MASS, GREATING TO TO 27988 30°C (0. 2.0.0) (0. 10.0) A SHAPPAN CONCRIST BAY REAL GREATING TO TO 1. 2713 30°C (0. 2.0.0) (0. 10.0) A SHAPPAN CONCRIST BAY REAL GREATING THE AND				12501					8,112.0
Apphalt Roads Str. D. Str. S	415-01.02	COLD PLANING BITUMINOUS PAVEMENT	SY	13681	15/98				75,848.3 632.10
\$83.01						PAVEIVIENT REIV	NOVAL TOTAL (ROUNL	ieu) \$	632,10
\$83.01	Asphalt Roads								
397-96.02.09.01		MINERAL AGGREGATE TYPE A BASE GRADING D	TON	22934		22934	\$ 26	00 \$	596,331.0
### ### ### ### ### ### ### ### ### ##									70,132.0
## 402-01 BITUNNOUS MATERIAL FOR PRIME COAT IF (C) TON 16 16 15 5 897,81 5 400-02 AGROSSIAGE FOR CORPT REPRETAL (CT) TON 10 10 10 5 747,73 5 410-10 70 AGROSSIAGE FOR CORPT REPRETAL (CT) TON 10 10 10 5 747,73 5 411-10 10 7 AGROSSIAGE FOR CORPT REPRETAL (CT) TON 10 10 10 5 747,73 5 411-10 10 7 AGROSSIAGE FOR CORPT REPRETAL FOR FACE COAT (CT) TON 10 10 10 5 747,73 5 411-10 10 7 AGROSSIAGE FOR CORPT REPRETAL FOR FACE COAT (CT) TON 10 10 10 5 747,73 5 74									158,572.7
### 402-02 ### 403-01 ### 403-01 ### 403-01 ### 410-02									13,138.5
### 43-01 ### BTUNNINUS MATERIAL FOR TACK COAT (C) TON				59		59	\$ 59	.35 \$	3,483.6
### ### ### ### ### ### ### ### ### ##									7,653.0
### ### ### ### ### ### ### ### ### ##	411-01.07	ACS MIX (PG64-22) GRADING E SHOULDER	TON	610		610	\$ 113	.54 \$	69,232.9
Concrete Roads TRATED PERMABLE BASE SY 1070 1070 5 30.22 5 501-01.03 PORTLAND CEMENT POLANIST (CARS A CONCRETE PAVEMENT PICHAN) 10" SY 555 5 555 5 508.57 5 5 5 5 5 5 5 5 5	411-(01 & 02 & 03).10	ACS MIX(ALL GRADES) GRADING D		1284		1284	\$ 127	.54 \$	163,707.7
331-93									1,082,30
331-93									
FORTIAND CEMENT CONCRETE PAYMENT (PLANI) 07 S78 535 535 508,77 5 604-0101 CLASS A CONCRETE (ROADWAY) CV 778 778 5 591,74 5 5 5 5 5 5 5 5 5	Concrete Roads								
CLASS A CONCRETE (ROADWAY) CY 778	313-03	TREATED PERMEABLE BASE	SY	1070		1070	\$ 30	.22 \$	32,334.1
Drainage 209-02.05 12" TEMPORARY SLOPE DRAIN LF 200 200 \$ 11.77 \$ 209-02.05 300 300 \$ 7.60 \$ 209-08.02 TEMPORARY SLEPTINE (EMTH REMOVAL) LF 3500 3500 \$ 3.52 \$ 209-08.03 TEMPORARY SLEPTINE (EMTH RACKING) LF 8500 8500 \$ 1.10 \$ 209-08.03 TEMPORARY SLETENCE (IMTHOUT BACKING) LF 8500 8500 \$ 1.10 \$ 209-08.03 TEMPORARY SLETENCE (IMTHOUT BACKING) LF 8500 8500 \$ 1.10 \$ 209-08.03 TEMPORARY SLETENCE (IMTHOUT BACKING) LF 8500 8500 \$ 1.10 \$ 209-08.08 TEMPORARY STREAM PER PEACH 5 5 \$ 492.59 \$ 209-09.03 TEMPORARY STREAM PER PEACH 5 5 \$ 492.59 \$ 209-09.03 TEMPORARY STREAM PER PEACH 10 10 10 \$ 472.29 \$ 209-09.04 TEMPORARY STREAM PORTSCHOIN (TIPE DE PEACH 15 15 \$ 154.77 \$ 209-09.04 TEMPORARY STREAM PORTSCHOIN (TIPE DE PEACH 20 20 5 237-16 \$ 209-65.01 TEMPORARY STREAM PORTSCHOIN (TIPE DE PEACH 20 20 5 237-16 \$ 209-65.01 TEMPORARY STREAM PORTSCHOIN (TIPE DE PEACH 20 20 5 237-16 \$ 209-65.02 TEMPORARY STREAM PORTSCHOIN (TIPE DE PEACH 20 20 5 237-16 \$ 209-65.02 TEMPORARY STREAM PORTSCHOIN (TIPE DE PEACH 20 20 20 5 237-16 \$ 209-05.01 TEMPORARY STREAM PORTSCHOIN (TIPE DE PEACH 20 20 20 20 20 20 20 2	501-01.03	PORTLAND CEMENT CONCRETE PAVEMENT (PLAIN) 10"	SY	535		535	\$ 108	.57 \$	58,089.2
Drainage 12* TEMPORARY SLOPE DRAIN LF 200 200 \$ 11.77 \$	604-01.01	CLASS A CONCRETE (ROADWAY)	CY	778		778	\$ 591	.74 \$	460,242.2
209-02.05 12" TEMPORARY SLOPE DRAIN F 200 200 \$ 11.77 \$ 209-05 209-05 \$ 209-05 \$ 209-08.02 \$ 209-08.02 \$ 209-08.03 \$ 209-08.03 \$ 209-08.03 \$ 209-08.03 \$ 209-08.07 \$ 209-08.07 \$ 209-08.07 \$ 209-08.07 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-09.03 \$ 209					CONCR	ETE RAMPS AND ROAD	WAYS TOTAL (ROUND	ED) \$	550,70
209-02.05 12" TEMPORARY SLOPE DRAIN F 200 200 \$ 11.77 \$ 209-05 209-05 \$ 209-05 \$ 209-08.02 \$ 209-08.02 \$ 209-08.03 \$ 209-08.03 \$ 209-08.03 \$ 209-08.03 \$ 209-08.07 \$ 209-08.07 \$ 209-08.07 \$ 209-08.07 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-08.08 \$ 209-09.03 \$ 209									
209-05 SEMINT REMOVAL CY 300 300 \$ 7.60 \$ 209-08.02 209-08.02 TEMPORARY SILT FENCE (WITHOUT BACKING) LF 33000 3500 \$ 3.52 \$ 5 \$ 209-08.03 TEMPORARY SILT FENCE (WITHOUT BACKING) LF 8500 8500 \$ 1.10 \$ 209-08.03 \$ 209-08.08 SEMINATE FENCE (WITHOUT BACKING) LF 8500 8500 \$ 1.10 \$ 209-08.08 SEMINATE FENCE (WITHOUT BACKING) LF 8500 8500 \$ 1.10 \$ 209-08.08 SEMINATE FENCE (WITHOUT BACKING) LF 8500 8500 \$ 1.10 \$ 209-08.08 SEMINATE FENCE (SEMINATE FENCE (SEMINATE FENCE AND PER SILVER SILV	Drainage								
209-08.02 TEMPORARY SILT FENCE (WITH BACKING) F 8500 \$5.00									2,354.0
209-08.03	209-05	SEDIMENT REMOVAL	. CY		300		\$ 7	.60 \$	2,280.0
209-08.07 ROCK CHECK DAM PER EACH 5 5 5 186.64 5 209-08.08 ENHANCED ROCK CHECK DAM EACH 5 5 5 492-59 5 209-09.03 SEDIMENT FILTER BAG [15' X.15'] EACH 10 10 5 472-59 5 209-09.03 CURB INLET PROTECTION (TYPE 0) EACH 15 15 5 154.77 5 209-09.03 CURB INLET PROTECTION (TYPE 0) EACH 20 20 5 237-16 5 209-09.03 CATCH BASIN PROTECTION (TYPE 0) EACH 20 20 5 237-16 5 209-09.03 CATCH BASIN PROTECH DESCRIPTION IS 4 4 5 34,600.00 5 209-09.00 CATCH BASIN PROTECH DESCRIPTION IS 4 4 5 15,000.00 5 209-09.00 CATCH BASIN PROTECH DESCRIPTION IS 4 4 5 15,000.00 5 209-09.00 CATCH BASIN STORE AND EVEN DESCRIPTION IS 4 4 5 15,000.00 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 6 17 5 4,727.84 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 1 5 8,0649.99 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 1 5 8,0649.99 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 1 1 5 8,0649.99 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 1 1 5 8,0649.99 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 1 1 5 8,0649.99 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 1 1 5 8,0649.99 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 1 1 5 8,0649.99 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 1 1 1 5 8,0649.99 5 209-09.00 CATCH BASINS, TYPE 12, 34'-8' DEPTH EA 1 1 1 1 1 1 1 1 1									12,320.0
209-08.08									9,350.0
SEDIMENT FILTER BAG (IST X.157) EACH 10 10 \$ 472.50 \$ 209.09.43 CURB INLET PROTECTION (TYPE 4) EACH 15 15 \$ 15 \$ 15.47.77 \$ 209.40.33 CATCH BASINS PROTECTION (TYPE 4) EACH 20 20 \$ 237.16 \$ 209.65.01 TEMPORARY STREAM DIVERSION (DESCRIPTION) IS 4 4 \$ 3.46.00.00 \$ 200.00 \$ 237.16 \$ 209.65.02 TEMPORARY STREAM DIVERSION (DESCRIPTION) IS 4 4 \$ 15.000.00 \$ 200.00 \$	209-08.07	ROCK CHECK DAM PER			5	5			933.
CUBB INLET PROTECTION (TYPE 4) EACH 15 15 5 154.77 5 20940.33 CATCH BASIN PROTECTION (TYPE D) EACH 20 20 5 237.16 5 20940.33 CATCH BASIN PROTECTION (TYPE D) EACH 20 20 5 237.16 5 20940.50 20940.50 TEMPORARY STREAM DIVERSION (DESCRIPTION) LS 4 4 5 3,600.00 5 20940.50 TEMPORARY STREAM DIVERSION (DESCRIPTION) LS 4 4 5 15,000.00 5 20940.50 20940.5									2,462.9
209-40.33 CATCH BASIN PROTECTION (TYPE D) EACH 20 20 \$ 237.16 \$ 209-65.01 TEMPORARY STREAM DIVERSION (DESCRIPTION) LS 4 4 \$ 34,600.00 \$ \$ 209-65.02 TEMPORARY STREAM DIVERSION (DESCRIPTION) LS 4 4 \$ 15,000.00 \$ \$ 607-05.02 24" CONCRETE PIPE CULVERT (CLASS III) LF \$447 \$ 86.55 \$ \$ 611-07.01 \$ (2.ASS A CONCRETE PIPE CULVERT (CLASS III) LF \$447 \$ 9.86.55 \$ \$ 611-07.02 \$ STEEL BAR REINFORCEMENT (PIPE ENDWALLS) LB 3666 3666 \$ 3.12 \$ \$ 611-12.02 \$ CATCH BASINS, TYPE 12, -4" -8" DEPTH EA 11 6 17 \$ 4,727.84 \$ \$ 611-12.02 \$ CATCH BASINS, TYPE 12, -4" -8" DEPTH EA 11 6 17 \$ 8,954.99 \$ \$ 611-12.02 \$ CATCH BASINS, TYPE 12, -4" -8" DEPTH EA 1 1 \$ 8,964.99 \$ \$ 611-12.02 \$ CATCH BASINS, TYPE 12, -4" -8" DEPTH EA 1 1 \$ 8,964.99 \$ \$ \$ 611-12.02 \$ CATCH BASINS, TYPE 12, -4" -8" DEPTH EA 0 10 10 \$ 5,554.90 \$ \$ 611-12.02 \$ CATCH BASINS, TYPE 12, -4" -8" DEPTH EA 0 10 10 \$ 5,554.90 \$ \$ 611-12.02 \$ CATCH BASINS, TYPE 12, -4" -8" DEPTH EA 0 10 10 \$ 5,554.90 \$ \$ 611-12.02 \$ Aggregate Underdrains (with pipe) LF 14050 14050 \$ 7.7.10 \$ \$ 740-11.03 TEMPORARY SEDIMENT TUBE IBIN (IBIN) LF 14050 1200 \$ 3.43 \$ \$ DRAINAGE TOTAL (ROUNDED) \$ \$ 701-02.03 \$ CONCRETE SIDEWALK (4") SF 8237 \$ 8237 \$ 8237 \$ 7.30 \$ \$ PORANAGE TOTAL (ROUNDED) \$ \$ 701-02.03 \$ CONCRETE CUBB RAMP SF 720 720 \$ 13.01 \$ \$ \$ ROAD WAY AND PAVEMENT APPURTENANCES TOTAL (ROUNDED) \$ \$ \$ ROAD WAY AND PAVEMENT APPURTENANCES TOTAL (ROUNDED) \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$									4,725.9
209-65.01 TEMPORARY STREAM DIVERSION (DESCRIPTION) LS									2,321.5
209-65.02 TEMPORARY STREAM DIVERSION (DESCRIPTION) LS									4,743.
607-05.02 24" CONCRETE PIPE CULVERT (CLASS III) LF 5447 5447 586.55 5 611-07.01 CLASS A CONCRETE (PIPE ENDWALLS) CY 39 39 5 1,425.66 5 5 611-07.02 STEEL BAR REINFORCEMENT (PIPE ENDWALLS) LB 3666 3666 5 3.12 5 5 611-12.02 CATCH BASINS, TYPE 12, > 4' - 8' DEPTH EA LA LA LA LA LA LA LA									138,400.0
G11-07.01 CLASS A CONCRETE (PIPE ENDWALLS) CY 39 39 39 \$ 1,425.66 \$ 611-07.02 STEL BAR REINFORCEMENT (PIPE ENDWALLS) LB 3666 3666 \$ 3.12 \$ 611-07.02 CATCH BASINS, TYPE 12, 24" -8" DEPTH EA 11 6 17 \$ 4,727.84 \$ 611-14.02 CATCH BASINS, TYPE 14, 24" -8" DEPTH EA 1 1 \$ 8,964.99 \$ 611-42.02 CATCH BASINS, TYPE 42, 24" -8" DEPTH EA 0 10 10 \$ 5,541.90 \$ 621-03.02 TEMPORARY DRAINAGE PIPE LF 200 200 \$ 34.12 \$ 621-03.02 TEMPORARY DRAINAGE PIPE LF 200 200 \$ 34.12 \$ 621-03.02 TEMPORARY SEDIMENT TUBE 18IN (18 IN) LF 14050 14050 \$ 7.10 \$ 740-11.03 TEMPORARY SEDIMENT TUBE 18IN (18 IN) LF 1200 1200 \$ 3.43 \$ 740-11.03 TEMPORARY SEDIMENT TUBE 18IN (18 IN) LF 1200 1200 \$ 3.43 \$ 740-11.03 TEMPORARY SEDIMENT TUBE 18IN (18 IN) LF TEMPORARY DRAINAGE PIPE TEMPORARY SEDIMENT TUBE 18IN (18 IN) LF TEMPORARY SEDIMENT TUBE 1					4		,		60,000.
611-07.02 STEL BAR REINFORCEMENT (PIPE ENDWALLS) LB 3666 3666 \$ 3.12 \$ 611-12.02 CATCH BASINS, TYPE 12, * 4 * -8 * DEPTH EA 11 6 17 \$ 4,727.84 \$ 611-14.02 CATCH BASINS, TYPE 12, * 4 * -8 * DEPTH EA 1 1 \$ 8,964.99 \$ 611-42.02 CATCH BASINS, TYPE 42, * 2 * -8 * DEPTH EA 0 10 10 \$ 5,541.90 \$ 621-03.02 SEPTH SANDER OF ARRIVED SANDE									471,429.2
611-12.02 CATCH BASINS, TYPE 12, > 4' - 8' DEPTH EA 11 6 17 \$ 4,727.84 \$ 611-14.02 CATCH BASINS, TYPE 14, > 4' - 8' DEPTH EA 1 1 \$ 8,964.99 \$ 611-14.02 CATCH BASINS, TYPE 14, > 4' - 8' DEPTH EA 1 1 \$ 8,964.99 \$ 611-14.02 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 8,964.99 \$ 611-14.02 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 0 1 1 \$ 8,964.99 \$ 611-14.02 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 0 1 1 \$ 8,964.99 \$ 611-14.02 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 0 1 10 10 \$ 5,554.90 \$ 611-14.02 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 0 1 10 10 \$ 5,541.90 \$ 611-14.02 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 0 1 10 10 \$ 5,541.90 \$ 611-14.02 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 0 1 10 10 \$ 5,541.90 \$ 611-14.02 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1050 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1050 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1050 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1050 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1050 CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,664.99 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,664.99 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,664.99 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,664.99 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,664.99 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,664.99 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,664.99 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,664.99 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH BASINS, TYPE 42, > 4' - 8' DEPTH EA 1 1 \$ 9,665.81 \$ CATCH B									54,995.
611-14.02									11,432.
611-42.02					6				81,322.
18" TEMPORARY DRAINAGE PIPE LF 200 200 \$ 34.12 \$ 710-02 Aggregate Underdrains (with pipe) LF 14050 14050 \$ 7.10 \$ 740-11.03 TEMPORARY SEDIMENT TUBE 18IN (18 IN) LF 1200 1200 \$ 3.43 \$ DRAINAGE TOTAL (ROUNDED) \$									5,160.
T10-02				0					56,868.
740-11.03 TEMPORARY SEDIMENT TUBE 18IN (18 IN) LF 1200 1200 \$ 3.43 \$ DRAINAGE TOTAL (ROUNDED) \$ Appurtenances					200				6,824.
Appurtenances 701-01.01				14050					99,715.
Appurtenances	/40-11.03	TEMPORARY SEDIMENT TUBE 18IN (18 IN)	LF		1200				4,116.
Tol-01.01 CONCRETE SIDEWALK (4") SF 8237 8237 \$ 7.30 \$ 701-02.03 CONCRETE CURB RAMP SF 720 720 \$ 13.01 \$ 702-01.02 CONCRETE CURB RAMP SF 10500 10500 \$ 20.77 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 -300 160 \$ 413.61 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 -300 160 \$ 413.61 \$ 702-03						DRA	INAGE TOTAL (ROUNL	ED) \$	1,031,8
Tol-01.01 CONCRETE SIDEWALK (4") SF 8237 8237 \$ 7.30 \$ 701-02.03 CONCRETE CURB RAMP SF 720 720 \$ 13.01 \$ 702-01.02 CONCRETE CURB RAMP SF 10500 10500 \$ 20.77 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 -300 160 \$ 413.61 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 -300 160 \$ 413.61 \$ 702-03 \$ 702-03 702-									
701-02.03 CONCRETE CURB RAMP SF 720 720 \$ 13.01 \$ 702-01.02 \$ CONCRETE CURB LF 10500 10500 \$ 20.77 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 -300 160 \$ 413.61 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 -300 160 \$ 413.61 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 -300 160 \$ 413.61 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 160 \$ 160 \$ 413.61 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 160 \$ 16		001/00577 (17 5		0227		6227	T ¢ -	20 4	CO
TO2-01.02 CONCRETE CURB LF 10500 10500 \$ 20.77 \$ 702-03 CONCRETE COMBINED CURB & GUTTER CY 460 -300 160 \$ 413.61 \$ 702-03 ROADWAY AND PAVEMENT APPURTENANCES TOTAL (ROUNDED) \$ 802-04 ROADWAY AND PAVEMENT APPURTENANCES TOTAL (ROUNDED) \$ 802-04 ROAD & CONSTRUCTION STAKES, LINES AND GRADES LS 1 1 \$ 93,658.10 \$ 203-01 ROAD & DRAINAGE EXCAVATION (UNCLASSIFIED) CY 49701 49701 \$ 11.29 \$ 11.2		,		8237	700				60,097
702-03 CONCRETE COMBINED CURB & GUTTER CY 460 -300 160 \$ 413.61 \$ ROADWAY AND PAVEMENT APPURTENANCES TOTAL (ROUNDED) \$ Earthwork & Mineral 105-01 CONSTRUCTION STAKES, LINES AND GRADES LS 1 1 \$ 93,658.10 \$ 203-01 ROAD & DRAINAGE EXCAVATION (UNCLASSIFIED) CY 49701 49701 \$ 11.29 \$									9,367.
ROADWAY AND PAVEMENT APPURTENANCES TOTAL (ROUNDED) \$				460					218,085.
Earthwork & Mineral 105-01 CONSTRUCTION STAKES, LINES AND GRADES LS 1 1 \$ 93,658.10 \$ 203-01 ROAD & DRAINAGE EXCAVATION (UNCLASSIFIED) CY 49701 49701 \$ 11.29 \$	/02-03	CONCRETE COMBINED CORB & GUTTER	LY	460					66,359. 354,0
105-01 CONSTRUCTION STAKES, LINES AND GRADES LS 1 1 \$ 93,658.10 \$ 203-01 ROAD & DRAINAGE EXCAVATION (UNCLASSIFIED) CY 49701 49701 \$ 11.29 \$					KUADWAY AND	PAVEIVIENT APPURTEN	ANCES TOTAL (ROUNL	ל (עם	354,0
105-01 CONSTRUCTION STAKES, LINES AND GRADES LS 1 1 \$ 93,658.10 \$ 203-01 ROAD & DRAINAGE EXCAVATION (UNCLASSIFIED) CY 49701 49701 \$ 11.29 \$	Farthwork & Mineral								
203-01 ROAD & DRAINAGE EXCAVATION (UNCLASSIFIED) CY 49701 49701 \$ 11.29 \$		CONSTRUCTION STAVES LINES AND CRADES	I ¢	1		1	¢ 02.650	10 ¢	93,658.
						_			561,010.
203-02.01 BORROW EXCAVATION (GRADED SOLID ROCK) TON 6213 6213 \$ 32.33 \$									200,852.8

PAY ITEM SUMMARY

203-03	BORROW EXCAVATION (UNCLASSIFIED)	CY	9319		9319	\$	12.56 \$	1
	DOMEST ENGLY (ONCERSSITED)	<u> </u>	3323		EARTHWORK & N			
Structures								
N/A	Removal of Bridge	SF	6960		6960	Ś	20.00 \$	1
N/A	New Bridge (Box):	SF	7460		7460	\$	126.00 \$	g
N/A	New Bridge (Steel Girder):	SF	1920		1920	\$	250.00 \$	
604-07.01	RETAINING WALL		1500		1500	\$	109.37 \$	
004 07.01	RETAINING WALL	31	1300				TAL (ROUNDED) \$	
					JING	JCTORES TO	TAL (KOUNDED) 3	
hanges and Unique Intersections								
manges and omque intersections				INTERCHANGES	AND UNIQUE INTERS	ECTIONS TO	TAL (POLINDED) \$	
				INTERCHANGES	AND ONIQUE INTERIS	Lenons 101	AL (NOONDED)	
Lighting & Signalization								
N/A	Traffic Signal	EA	0	1	1	\$	250,000.00 \$	2
N/A	Trume Signar	LA	<u> </u>	-	LIGHTING & SIGNAL	IZATION TOT		
					EIGITING & SIGNAL	IZATION TO	AL (NOONDED)	
Guardrail								
705-01.01	GUARDRAIL AT BRIDGE ENDS	LF	300		300	Ċ	66.52 \$	
705-01.01 705-06.01	W Beam GR (Type 2) Mash TL3	LF	562	400	962.32	Ś	20.07 \$	
				400		т		
705-06.20	Tangent Energy Absorbing Term Mash TL-3	EA	16		16	\$	2,626.00 \$	
					GU	ARDRAIL TO	TAL (ROUNDED) \$	
6 11 16 11								
Seeding and Sodding						-		
801-01	SEEDING (WITH MULCH)	UNIT	553		553	\$	27.26 \$	
801-01.07	TEMPORARY SEEDING (WITH MULCH)		415		415	\$	22.31 \$	
801-02	SEEDING (WITHOUT MULCH)	UNIT	415		415	\$	17.70 \$	
					S	ODDING TO	TAL (ROUNDED) \$	
Maintenace of Traffic							1.	
N/A	Traffic Control		1		1		\$	1
712-02.02	INTERCONNECTED PORTABLE BARRIER RAIL	LF	393	700	1093	\$	30.18 \$	
					MAINTENANCE OF	TRAFFIC TO	TAL (ROUNDED) \$	
Signs							- · · · · · · · · · · · · · · · · · · ·	
713-99.91	Signs			1	1	\$	7,100.00 \$	
Not Listed	Signs (Construction)	LS	1		1	\$	- \$	
						SIGNING TO	TAL (ROUNDED) \$	
Pavement Markings							1.	
716-02.03	Plastic Pavement Marking (Cross-Walk)			115	115	Ş	9.81 \$	
716-02.05	Plastic Pavement Marking (Stop Line)			65	65	\$	11.37 \$	
716-02.06	Plastic Pavement Marking (Turn Lane Arrow)	EA		7	7	\$	138.38 \$	
716-03.01	Plastic Word Pavement Marking (Only)			6	6	\$	207.32 \$	
716-03.05	Plastic Word Pavement Marking (Bike Lane)			7	7	\$	177.88 \$	
716-04.05	Plastic Pavement Marking (Straight Arrow)	EA		3	3	\$	62.10 \$	
716-13.06	Spray Thermo P.M. (40 mil 4")	LM	6.0	2	8.0	\$	1,654.23 \$	
					PAVEMENT MA	ARKINGS TOT	TAL (ROUNDED) \$	
Fencing								
707-01.11	Chain Link Fence (6 Foot)	LF		6000	6000	\$	10.03 \$	
707-01.12	End & Corner Post ASM(CL Fence 6')			40	40	\$	165.92 \$	
707-01.13	Gate -CL Fence-6 Foot	EA		2	2	\$	1,411.20 \$	
707-08.11	High Visibility Construction Fence	LF		3500	3500	\$	1.67 \$	
	The Tistinity Constitution Tence			3300			L (ROUNDED) \$	
							, , , , , , , , , , , , , , , , , , , ,	
Rip-Rap								
709-05.05	Machined Rip-Rap (Class A-3)	TON	2400		2400	Ś	39.85 \$	
	Machined Rip-Rap (Class A-5)	TON	2400	300	300	Ś	31.09 \$	
				- 300	500			
709-05.08 709-05.09	Machined Rip-Rap (Class C)			200	200	\$	33.59 \$	

PAY ITEM SUMMARY

201-01	Clearing and Grubbing	LS		1	1	\$	60,931.51	\$ 60,931.51
					CLEAR AND GRU	BBING TO	OTAL (ROUNDED)	\$ 61,000.00
Railroad At-Grade Crossing								
				RAILROAD	CROSSING OR SEPAR	ATION TO	OTAL (ROUNDED)	•
Utilties								
N/A	Underground Water	LM	0.15		0.15	\$	700,000	\$ 105,000
N/A	Underground Sewer	LM	0.15		0.15	\$	1,670,000	\$ 250,500
					UTILI	TIES TOT	AL (ROUNDED)	\$ 355,500.00
Right-of-Way								
N/A	Right-of-Way	LS	1	2	3	\$	198,163.64	\$ 594,490.91
					RIGHT-OF-\	WAY TOT	AL (ROUNDED)	\$ 594,500.00

		COST	EST	IMATE SUM	1M	ARY (2021)			
PIN	Project Type of Work	Preliminary Engineering:		Right-of-Way:		Utilities:	Construction:	7	Total Project Cost (2021):
129840.00	Widen	\$ 1,030,000	\$	595,000	\$	356,000	\$ 11,200,000	\$	13,200,000

	INFLA	TED COST ESTIMATE	SUMMARY		Report Type:	Technical Report
No. of Years	Year	Preliminary Engineering:	Right-of-Way:	Utilities:	Construction:	Total Inflated Project Cost
1	2023	\$ 1,080,000	\$ 625,000	\$ 374,000	\$ 11,800,000	\$ 13,900,000
2	2024	\$ 1,140,000	\$ 656,000	\$ 392,000	\$ 12,300,000	\$ 14,600,000
3	2025	\$ 1,190,000	\$ 689,000	\$ 412,000	\$ 13,000,000	\$ 15,300,000
4	2026	\$ 1,250,000	\$ 723,000	\$ 433,000	\$ 13,600,000	\$ 16,000,000
5	2027	\$ 1,310,000	\$ 759,000	\$ 454,000	\$ 14,300,000	\$ 16,800,000
6	2028	\$ 1,380,000	\$ 797,000	\$ 477,000	\$ 15,000,000	\$ 17,700,000
7	2029	\$ 1,450,000	\$ 837,000	\$ 501,000	\$ 15,800,000	\$ 18,600,000
8	2030	\$ 1,520,000	\$ 879,000	\$ 526,000	\$ 16,500,000	\$ 19,500,000
9	2031	\$ 1,600,000	\$ 923,000	\$ 552,000	\$ 17,400,000	\$ 20,500,000
10	2032	\$ 1,680,000	\$ 969,000	\$ 580,000	\$ 18,200,000	\$ 21,500,000

INFLAT	TION INPUTS
Inflation Rate:	5.00%

Technical Memorandum – Exising Traffic Counts

TECHNICAL MEMORANDUM

JAMES WHITE PARKWAY URBAN WILDERNESS CORRIDOR STUDY
Existing Traffic Counts

July 13, 2020

TECHNICAL MEMORANDUM

James White Parkway Urban wilderness Corridor Study
Existing Traffic Counts

INTRODUCTION

As a part of the City of Knoxville's James White Parkway Urban Wilderness corridor study, Gresham Smith is tasked with assisting the City of Knoxville in evaluating the transportation corridor adjacent to James White Parkway south of the Tennessee River and developing a Transportation Investment Report (TIR) for TDOT review.

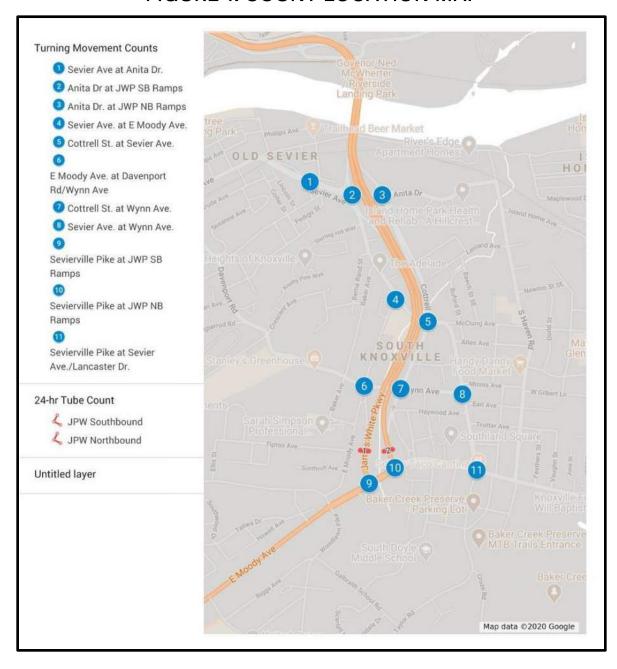
Due to the current Covid-19 situation, the existing traffic patterns on James White Parkway and adjacent roadways are anticipated to be low and different compared to the actual demand. The required traffic counts along the study area were obtained from the previous studies performed in the last three years. These counts are proposed to have better representation of the actual travel demand within the study area than any that could be currently collected.

The purpose of this memo is to present traffic data from previous studies and obtain TDOT concurrence that the traffic counts can be used for this study.

TRAFFIC COUNTS LOCATIONS

Available turning movement traffic counts at eleven locations and one 24-hour tube count from previous studies are listed in the table below. A count location map is shown in Figure 1.

INTERSECTION	DATE AND TIME
Sevier Avenue at Anita Drive	Feb 2018; 6-9am & 3-6pm
James White Parkway Southbound on/off ramp at Anita Drive	May 2017; 7-9am, 11am-12pm, 4-6pm
James White Parkway Northbound on/off ramp at Anita Drive	May 2017; 7-9am, 11am-12pm, 4-6pm
Sevier Avenue at E Moody Avenue	May 2017; 7-9am, 11am-12pm, 4-6pm
Cottrell Street at Sevier Street	May 2017; 7-9am, 11am-12pm, 4-6pm
E Moody Avenue at Wynn Avenue/Davenport Road	May 2017; 7-9am, 11am-12pm, 4-6pm
Cottrell Street at Wynn Avenue	May 2017; 7-9am, 11am-12pm, 4-6pm
Sevier Avenue at Wynn Avenue	Feb 2018; 6-9am & 3-6pm
James White Parkway Southbound off ramp at Sevierville Pike	Feb 2016; 7-9am, 11am-12pm, 4-6pm
James White Parkway Northbound on ramp at Sevierville Pike	Feb 2016; 7-9am, 11am-12pm, 4-6pm
Sevierville Pike at Sevier Avenue	August 2017; 7-9am, 11am-12pm, 4-6pm
24-hour Tube Count, North of Sevierville Pike	June 2017


TECHNICAL MEMORANDUM

JAMES WHITE PARKWAY URBAN WILDERNESS CORRIDOR STUDY

Existing Traffic Counts

July 13, 2020

FIGURE 1: COUNT LOCATION MAP

TECHNICAL MEMORANDUM

JAMES WHITE PARKWAY URBAN WILDERNESS CORRIDOR STUDY
Existing Traffic Counts
July 13, 2020

Page 3

GROWTH RATE METHODOLOGY (TO BE COMPLETED IN FUTURE MEMORANDUM)

Using the TDOT's traffic history website, the history trend in traffic counts will be evaluated for all count stations within the study area. The Knoxville TPO's TDM data will also be evaluated for the base and future years to determine traffic growth in the study area. A growth rate to be used for this study will be determined using TDOT's traffic history website and the Knoxville TPO's TDM data. This growth rate will be applied to traffic counts obtained from previous studies to determine the base and future year peak hour traffic counts.

A detailed technical memorandum summarizing traffic data and future year projections will be submitted for this study.

CONCLUSION

Considering the current Covid-19 situation, for this study it is recommended to use the data collected from previous studies and apply a growth rate to these counts to determine base and future year volumes.

If you have questions, please do not hesitate to contact Jon Storey at jon.storey@greshamsmith.com

Technical Memorandum – Traffic Data and Projection Summary

James White Parkway Urban Wilderness Corridor Study Technical Memorandum #1 Traffic Data and Projection Summary

City of Knoxville, TN

Executive Summary

This memorandum summarizes the base year (2020) and design year (2040) projected turning movement volumes for both the "No-Build" and "Build" Alternatives within the *James White Parkway Urban Wilderness Corridor Study* Area. The traffic projections assume a 1.5 percent annual growth in traffic, consistent with the Knoxville Transportation Planning Organization's Travel Demand Model. Calculations of the projections are provided.

City of Knoxville Engineering 3131 Morris Avenue Knoxville, TN 37909

Gresham Smith 2095 Lakeside Centre Way #120 Knoxville, TN 37922

Gresham Smith Project No. 44686

August 18, 2020

[This page left intentionally blank]

Table of Contents

<u>1.0 </u>	FRAFFIC PROJECTION SUMMARY	<u></u>
2.0	TRAFFIC DATA SOURCES	-
2.0 2.1	TRAFFIC DATA SOURCES	-
2.2	FIELD COLLECTED DATA	5
۷.۷	TILLD GOLLLOTED DATA	
		4
<u>3.0 I</u>	TRAFFIC PROJECTION DATATDOT AADT DATA	<u>T</u>
3.1	TDOT AADT DATA	
3.2	TPO TDM DATA	14
<u>4.0 U</u>	JRBAN WILDERNESS GATEWAY PARK	1
5.0 T	TRAFFIC PROJECTION CALCULATIONS	2 [,]
<u>5.5 1</u>	TRAFFIC PROJECTION CALCULATIONS	2.
5.2		
0.2	TWT ROSEOTION OF LOOP (TIONO	
<u>Tables</u>		
	1: Peak Hour by Location	
	2: Seasonal Variation Factors	
Table 3	3: TDOT AADT Historical Data (1 of 3)	11
	4: TDOT AADT Historical Data (3 of 3)	
	5: TPO TDM Traffic Projections (1 of 2)	
	6: TPO Trip Generation Calculations	
Figures		
Figure	1 :Build Alternative Single-Line Sketch	2
	2: 2020 Turning Movements (No- Build / Existing Geometry)	
	3: 2040 Turning Movements (No-Build / Existing Geometry)	
	4: 2040 Turning Movements (Build / Proposed Geometry)	
	5: Annual Average Daily Traffic	
Figure	6: Traffic Data Locations with Traffic Control Features	9
	7: TDOT AADT Historical Data (2 of 3)	
Figure	8: TPO TDM Traffic Projections (2 of 2)	16
	9: Urban Wilderness Gateway Overview Map	
	10: Urban Wilderness Gateway Overview Map	
i iguic	10. Oldan vindomodo Odloway i din Map	

1.0 TRAFFIC PROJECTION SUMMARY

The traffic projections were developed for the modification of James White Parkway as the primary entrance to the Urban Wilderness Park with a parallel greenway. The limits of the study area along James White Parkway will extend from the bridge over the Tennessee River to the north, to Sevierville Pike to the south. In addition, the study area includes Cottrell Street to the east, Sevier Avenue/E. Moody Avenue to the west, and the interchange of James White Parkway at Sevier Avenue / Anita Drive.

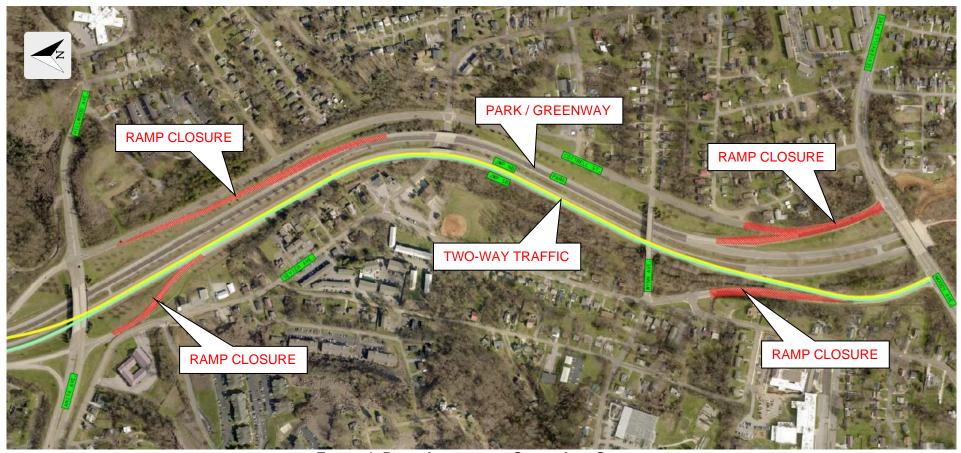
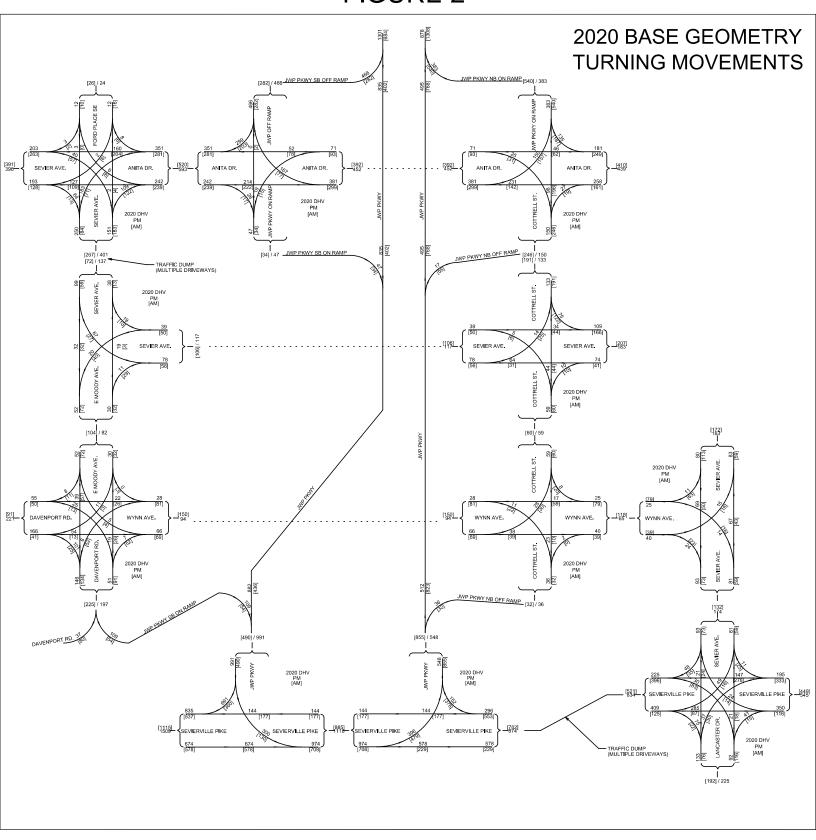



FIGURE 1 : BUILD ALTERNATIVE SINGLE-LINE SKETCH

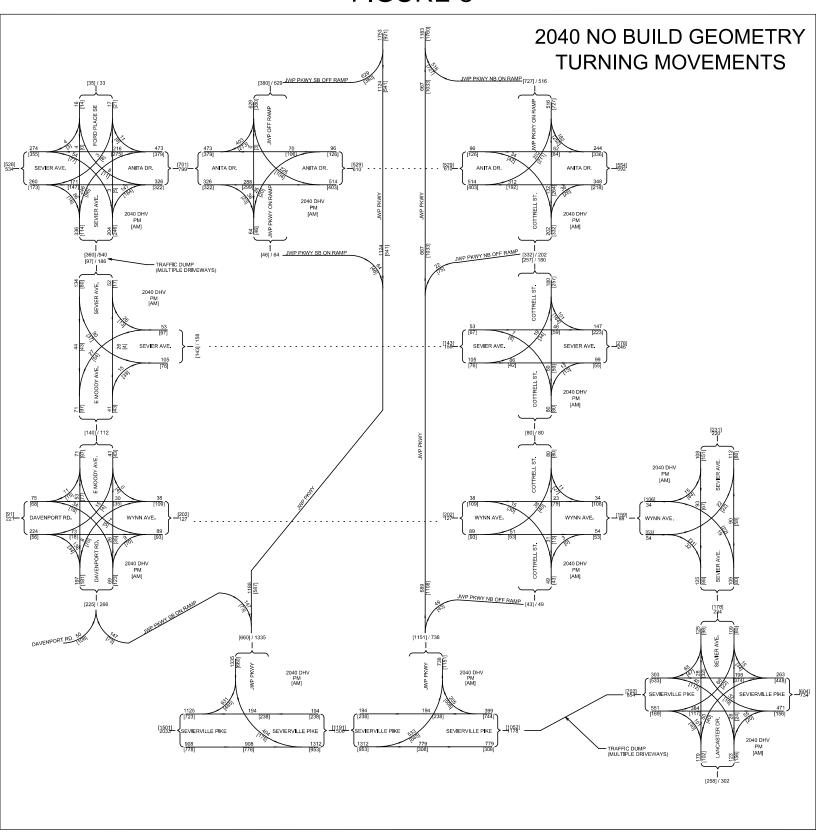

James White Parkway Urban Wilderness Corridor Study Traffic Data and Projection Summary City of Knoxville, TN

Figure 2 summarizes the base year (2020) turning movement volumes with existing geometry. Figure 3 and Figure 4 summarize the design year (2040) turning movement volumes for both the "No-Build" and "Build" Alternatives within the James White Parkway Urban Wilderness Corridor Study area. The traffic projections assume a 1.5 percent annual growth in traffic, consistent with the Knoxville Transportation Planning Organization's Travel Demand Model.

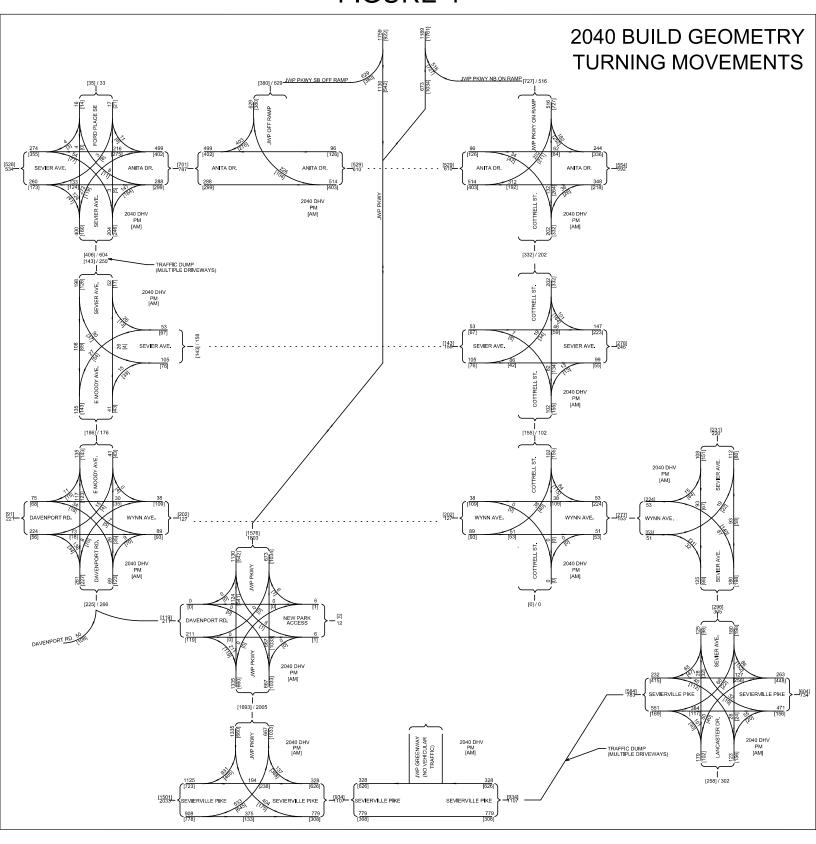

FIGURE 2

FIGURE 3

FIGURE 4

2.0 TRAFFIC DATA SOURCES

Traffic data from three primary sources are utilized in the *James White Parkway Urban Wilderness Corridor Study* traffic projections:

- Tennessee Department of Transportation (TDOT) Annual Average Daily Traffic (AADT) Data
- Field Collected Data
- Knoxville Area Transportation Planning Organization (TPO) Travel Demand Model (TDM)
 Data

2.1 TDOT AADT DATA

Figure 6 shows the 2018 Annual Average Daily Traffic (AADT) volumes reported by TDOT along the major roadways in the study area. The James White Parkway Bridge has an AADT of 20,679 vehicles with 10 percent trucks, Henley Street Bridge 34,281 vehicles with 4 percent trucks, and Gay Street Bridge 5,556 vehicles with 2 percent trucks. E. Moody Avenue has an AADT of 9,297 vehicles. TDOT AADT data is available on their website at:

https://www.arcgis.com/apps/webappviewer/index.html?id=075987cdae37474b88fa400d65681354.

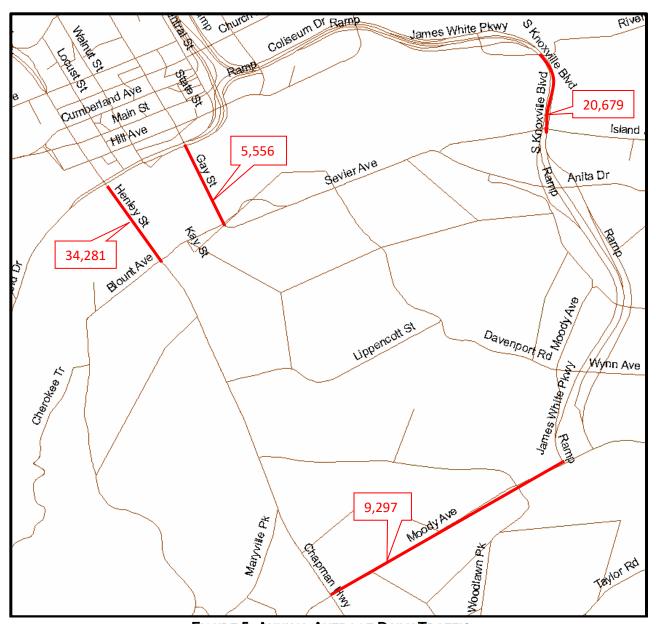


FIGURE 5: ANNUAL AVERAGE DAILY TRAFFIC Source: TDOT 2018 (most recent year available)

2.2 FIELD COLLECTED DATA

Due to the current Covid-19 situation, the existing traffic patterns on James White Parkway and adjacent roadways are anticipated to be low and different compared to the actual demand. Turning movement count traffic data for the *James White Parkway Urban Wilderness Study* area were obtained from the previous studies performed within the last three years. Data at eleven (11) intersections within the vicinity of this project were previously collected. Figure 6 identifies the data locations. The locations are labeled with a Site ID. Table 1 identifies the AM and PM peak hours at each location. TDOT's seasonal variation factors for urban roadways were used to convert these peak hour counts based on the existing month and day of the week collected. Table 2 identifies the variation factor used for each time period.

FIGURE 6: TRAFFIC DATA LOCATIONS WITH TRAFFIC CONTROL FEATURES

TABLE 1: PEAK HOUR BY LOCATION

	James White Parkway Corrid	or Study Peak Hours	by Intersection	
ID	Intersection	Month and Year	AM Peak Hour	PM Peak Hour
1	Sevier Ave. at Anita Dr.	Feb-18	7:15 – 8:15	4:45 – 5:45
2	Anita Dr. at JWP SB Ramps	May-17	7:15 – 8:15	4:00 - 5:00
3	Anita Dr. at JWP NB Ramps	May-17	7:15 – 8:15	4:30 - 5:30
4	Sevier Ave. at Moody E Moody Ave.	May-17	7:15 – 8:15	4:30 - 5:30
5	Cottrell St.at Sevier Ave.	May-17	7:15 – 8:15	4:00 - 5:00
6	E Moody Ave, at Davenport Rd./Wynn Ave.	May-17	7:00 – 8:00	5:00 - 6:00
7	Cottrell St. at Wynn Ave.	May-17; June-17	7:00 – 8:00	4:30 - 5:30
8	Sevier Ave. at Wynn Ave.	Feb-18	7:00 - 8:00	3:00 - 4:00
9	Sevierville Pike at JWP SB Ramps	Feb-16	7:15 – 8:15	4:30 - 5:30
10	Sevierville Pike at JWP NB Ramps	Feb-16	7:15 – 8:15	4:45 - 5:45
11	Sevierville Pike at Sevier Ave./Lancaster Dr.	Aug-17	7:15 – 8:15	5:00 - 6:00
12	JPW Southbound, North of Sevierville Pike	June 2017	24 Hou	r Count
13	JPW Northbound, North of Sevierville Pike	June 2017	24 Hou	r Count

Source: Field Counts

TABLE 2: SEASONAL VARIATION FACTORS

ID	Intersection	AM Count Month/Day	AM Variation Factor	PM Count Month/Day	PM Variation Factor
1	Sevier Ave. at Anita Dr.	Feb/ Thurs	0.99	Feb/ Thurs	0.99
2	Anita Dr. at JWP SB Ramps	May/Fri	0.82	May/Thurs	0.88
3	Anita Dr. at JWP NB Ramps	May/Tues	0.93	May/Mon	0.98
4	Sevier Ave. at Moody E Moody Ave.	May/Tues	0.93	May/Tues	0.93
5	Cottrell St.at Sevier Ave.	May/Wed	0.92	May/Tues	0.98
6	E Moody Ave, at Davenport Rd./Wynn Ave.	May/Mon	0.98	May/Thurs	0.88
7	Cottrell St. at Wynn Ave.	June/Tues	0.95	May/Thurs	0.88
8	Sevier Ave. at Wynn Ave.	Feb/ Thurs	0.99	Feb/ Thurs	0.99
9	Sevierville Pike at JWP SB Ramps	Feb/ Thurs	0.99	Feb/Mon	1.06
10	Sevierville Pike at JWP NB Ramps	Feb/ Thurs	0.99	Feb/Mon	1.06
11	Sevierville Pike at Sevier Ave./Lancaster Dr.	Aug/Thurs	0.93	Aug/Thurs	0.93

Source: Field Counts

3.0 TRAFFIC PROJECTION DATA

3.1 TDOT AADT DATA

TDOT AADT data from the past ten (10) years was reviewed. The AADT data was from nine (9) nearby TDOT count stations (Station 270, 360, 93, 154, 111, 94, 456, 374 and 310). Table 2 summarizes the AADT data collected at these nine (9) count stations along with their location. Table 3 charts the last ten (10) years of traffic data. All locations, with the exception of I-40, have experienced growth of 1% or less. Some locations experienced a negative growth. A conservative growth rate of 1.5% is recommended for this project based on the Travel Demand Model Forecast shown in Section 3.4.

TABLE 3: TDOT AADT HISTORICAL DATA (1 of 3)

James Wh	nite Pkwy Sta. 270
2009	44,869
2010	45,274
2011	46,089
2012	47,108
2013	44,777
2014	45,953
2015	31,575
2016	35,537
2017	38,732
2018	38,404
Henley	Street Sta. 154
2009	43,220
2010	38,635
2011	47,351
2012	42,789
2013	19,880
2014	29,532
2015	26,520
2016	26,785
2017	30,105
2018	36,013

James Whit	te Pkwy Sta. 360
2009	17,100
2010	15,846
2011	16,486
2012	16,816
2013	17,220
2014	14,280
2015	12,410
2016	14,452
2017	14,597
2018	20,679
Chapman H	lighway Sta. 111
Chapman H 2009	ighway Sta. 111 29,714
2009	29,714
2009 2010	29,714 29,966
2009 2010 2011	29,714 29,966 26,620
2009 2010 2011 2012	29,714 29,966 26,620 26,764
2009 2010 2011 2012 2013	29,714 29,966 26,620 26,764 27,768
2009 2010 2011 2012 2013 2014	29,714 29,966 26,620 26,764 27,768 28,414
2009 2010 2011 2012 2013 2014 2015	29,714 29,966 26,620 26,764 27,768 28,414 30,379
2009 2010 2011 2012 2013 2014 2015 2016	29,714 29,966 26,620 26,764 27,768 28,414 30,379 31,449

Herliey St.	Bridge Sta. 93
2009	39,229
2010	40,790
2011	42,099
2012	42,487
2013	42,558
2014	43,104
2015	43,225
2016	49,896
2017	35,774
2018	34,281
Gay Street	Bridge Sta. 94
Gay Street 2009	Bridge Sta. 94 7,767
2009	7,767
2009 2010	7,767 8,383
2009 2010 2011	7,767 8,383 8,634
2009 2010 2011 2012	7,767 8,383 8,634 8,807
2009 2010 2011 2012 2013	7,767 8,383 8,634 8,807 8,828
2009 2010 2011 2012 2013 2014	7,767 8,383 8,634 8,807 8,828 8,993
2009 2010 2011 2012 2013 2014 2015	7,767 8,383 8,634 8,807 8,828 8,993 9,012
2009 2010 2011 2012 2013 2014 2015 2016	7,767 8,383 8,634 8,807 8,828 8,993 9,012 5,205

Henley St. Bridge Sta. 93

I-40 Sta. 456		
2009	114,840	
2010	110,566	
2011	119,005	
2012	119,584	
2013	137,337	
2014	107,546	
2015	136,067	
2016	137,591	
2017	145,208	
2018	126,779	

E. Moody Ave SE Sta. 374		
2009	8,465	
2010	8,558	
2011	9,415	
2012	9,149	
2013	17,799	
2014	10,269	
2015	9,407	
2016	9,008	
2017	9,098	
2018	9,297	

Sevier Ave S of Ft Louden		
Lake Sta. 310		
2009	7,072	
2010	5,002	
2011	4,824	
2012	4,969	
2013	4,425	
2014	4,009	
2015	5,052	
2016	4,400	
2017	5,043	
2018	4,916	

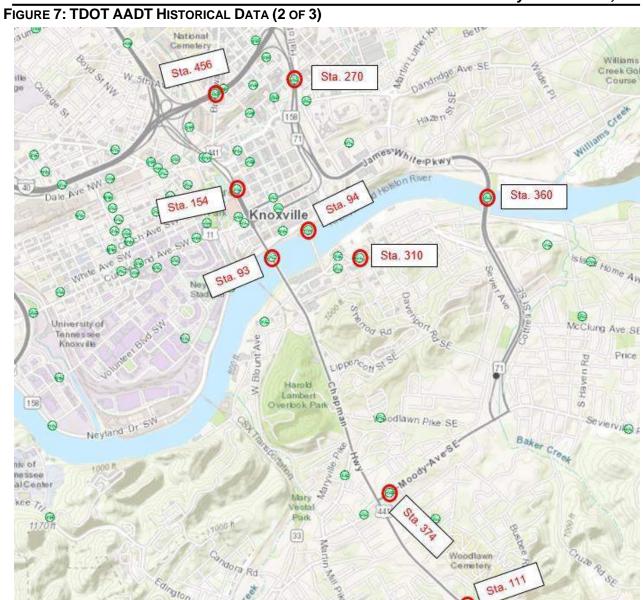
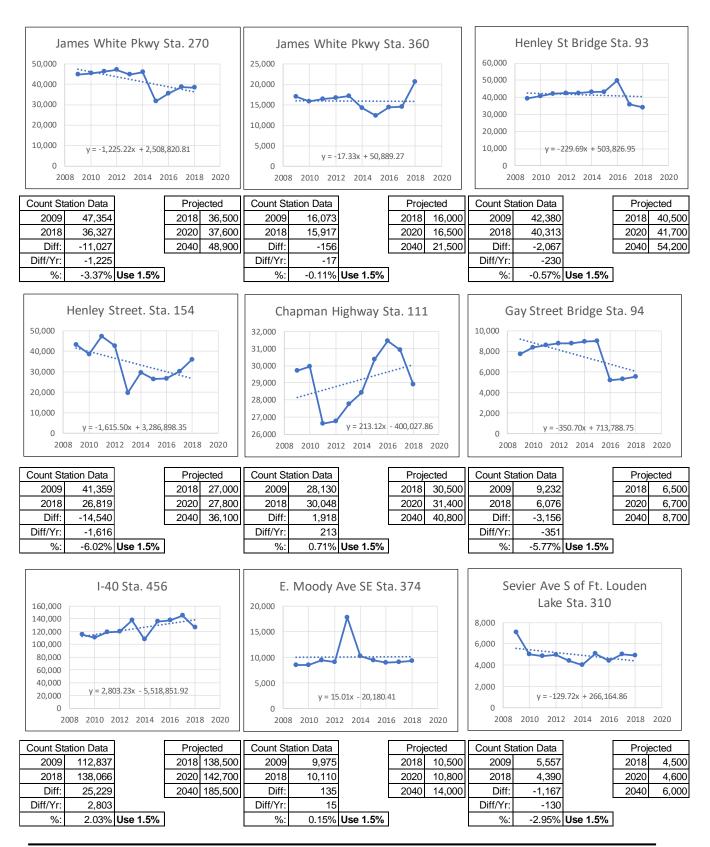



TABLE 4: TDOT AADT HISTORICAL DATA (3 OF 3)

3.2 TPO TDM DATA

Table 4 summarizes the AADT volumes at four (4) locations along James White Parkway predicted in the TPO's TDM. The TPO's growth projections take into account future new development and infill opportunities within and surrounding the study area. Segment 1 of James White Parkway is predicted to see an annual 1.06% increase in traffic volumes. Segment 2 is predicted to see a 1.28% increase in traffic volumes. Segment 3 is predicted to see a 1.28% increase in traffic volumes. Segment 4 is predicted to see a 1.27% increase in traffic volumes. The James White Parkway Urban Wilderness Corridor Study assumes an annual traffic growth rate of 1.5%.

TABLE 5: TPO TDM TRAFFIC PROJECTIONS (1 of 2)

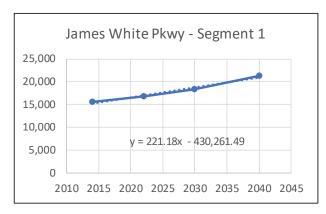
James White Pkwy	
Segment 1	
2014	15,506
2022	16,724
2030	18,350
2040	21,253

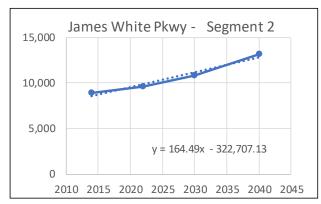
James White Pkwy	
Segment 2	
2014	8,886
2022	9,640
2030	10,860
2040	13,146
Constitution Determine	4 200/

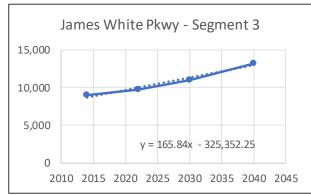
James White Pkwy	
Segment 3	
2014	8,961
2022	9,719
2030	10,952
2040	13,255
Croudh Data	1 200/

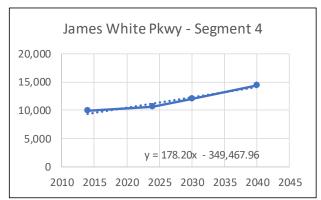
James White Pkwy	
Segment 4	
2014	9,859
2024	10,662
2030	12,053
2040	14,418

Growth Rate: 1.06%


Growth Rate:


n Rate: 1.28%


Growth Rate:


1.28%

Growth Rate: 1.27%

Segme	nt 1
2014	15,195
2040	20,946
Diff:	5,751
Diff/Yr:	221
%:	1.06%

Segmer	nt 2
2014	8,576
2040	12,852
Diff:	4,277
Diff/Yr:	164
%:	1.28%

Segmer	nt 3
2014	8,650
2040	12,961
Diff:	4,312
Diff/Yr:	166
%:	1.28%

Segmer	nt 4
2014	9,427
2040	14,060
Diff:	4,633
Diff/Yr:	178
%:	1.27%

Use 1.5% Growth Rate

Note: Growth rate and volumes developed from linear regression equations of TPO TDM data (see charts)

Tenence EV

No St. Space PI

Anita Dr. Milwood Or

Anita Dr. Milwood Or

No Space PI

FIGURE 8: TPO TDM TRAFFIC PROJECTIONS (2 of 2)

4.0 URBAN WILDERNESS GATEWAY PARK

The Urban Wilderness Gateway Park site was acquired by the City of Knoxville via an excess land transfer from TDOT. It is located between the terminus of the James White Parkway and Baker Creek Preserve. Figure 9 shows the proposed site map overview and Figure 10 shows the gateway park in detail. Both figures are an excerpt from the *Urban Wilderness Gateway Park Concept Design* report dated August 31, 2018.

As part of the Urban Wilderness project, the existing northbound lanes of James White Parkway will be converted into a continuous bike and pedestrian greenway and vehicular traffic will be shifted to the west where the existing southbound lanes are located. Therefore, James White Parkway will be two-way traffic on the current southbound lanes. A new access point to the gateway park will be located just north of E. Moody Avenue on James White Parkway.

To determine the new trips that will be entering and exiting the park, the Institute of Transportation Engineers (ITE) 10th Edition Trip Generation Manual was used. The *Urban Wilderness Gateway Park Concept Design* report stated a total of 113 acres of park will be created with the extension of the park up the James White Parkway. For 113 acres of public park (land use 411), a total of 88 daily trips will enter and exit the site – 1 enter and 1 exit in the AM peak period and 6 enter and 6 exit in the PM peak period. Since there will be multiple access points to the park area outside of the study area, it was assumed that all generated trips would be from James White Parkway north of the bridge. The newly generated peak hour trips are minimal and are not expected to negatively impact the surrounding roadways in the peak hours. Table 6 shows the trip generation calculations.

FIGURE 10: URBAN WILDERNESS GATEWAY PARK MAP

TABLE 6: TRIP GENERATION CALCULATIONS

WEEKDAY TOTAL
DATA STATISTICS
Land Use:
Public Park (411)
Click for more details
Independent Variable: 113
Acres
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
5
Avg. Num. of Acres:
612
Average Rate:
0.78
Range of Rates:
0.55 - 34.00
Standard Deviation:
1.36
Fitted Curve Equation:
T = 0.64(X) + 88.46
R2:
0.82
Directional Distribution:
50% entering, 50% exiting
Calculated Trip Ends:
Average Rate: 88 (Total), 44
(Entry), 44 (Exit)
Fitted Curve: 161 (Total), 80
(Entry), 81 (Exit)

AM PEAK	
DATA STATISTIC	<u>s</u>
1 111	
Land Use:	
Public Park	<u>(411)</u>
Click for more details	
Independent Variable:	113
	Acres
Time Period:	
Weekday	
Peak Hour of Adjacent S	treet
Traffic	
One Hour Between 7 and	d 9
a.m.	
Setting/Location:	
General Urban/Suburbar	<u> </u>
Trip Type:	
Vehicle	
Number of Studies:	
	5
Avg. Num. of Acres:	
	398
Average Rate:	
<u> </u>	0.02
Range of Rates:	
) - 4.50
Standard Deviation:	
	0.23
Fitted Curve Equation:	
	t Given
R2:	

Directional Distribution):
59% entering, 41%	
Calculated Trip Ends:	
Average Rate: 2 (T	otal) 1
(Entry),	
(2.10.9))	· (=xit)

DATA 074-0	
DATA STATIS	TICS
Land Use:	
	Dorle (444)
	Park (411)
Click for more details	
Independent Variab	le: 113 Acres
Time Period:	Acres
Weekday	
Peak Hour of Adjace	nt Stroot
Traffic	
One Hour Between 4	and 6
p.m.	
Setting/Location:	
General Urban/Subu	rban
Trip Type:	
Vehicle	
Number of Studies:	
	6
Avg. Num. of Acres	:
	516
Average Rate:	
	0.11
Range of Rates:	
	0.05 - 3.50
	-
Standard Deviation	
Standard Deviation	0.24
Standard Deviation Fitted Curve Equati	0.24 on:
Fitted Curve Equation $T = 0.066$	0.24 on:
Standard Deviation Fitted Curve Equati	0.24 on: (X) + 22.60
Fitted Curve Equation $T = 0.060$ R2:	0.24 on: (X) + 22.60
Fitted Curve Equati T = 0.060 R2: Directional Distribu	0.24 on: (X) + 22.60 0.53 tion:
Fitted Curve Equation T = 0.066 R2: Directional Distribut 55% entering, 4	0.24 on: (X) + 22.60 0.53 tion: 15% exiting
Fitted Curve Equation: T = 0.060 R2: Directional Distribut 55% entering, 4 Calculated Trip End	0.24 on: (X) + 22.60 0.53 tion: 45% exiting
Fitted Curve Equation: T = 0.066 R2: Directional Distribut 55% entering, 4 Calculated Trip End Average Rate: 12	0.24 on: (X) + 22.60 0.53 tion: 15% exiting ls: 2 (Total), 6
Fitted Curve Equation: T = 0.066 R2: Directional Distribut 55% entering, 4 Calculated Trip End Average Rate: 12 (Entr	0.24 on: (X) + 22.60 0.53 tion: 15% exiting ls: 2 (Total), 6 (Exit)
Fitted Curve Equation: T = 0.060 R2: Directional Distribut 55% entering, 4 Calculated Trip End Average Rate: 12 (Entr Fitted Curve: 29	0.24 on: (X) + 22.60 0.53 tion: 15% exiting ls: 2 (Total), 6 (Exit)

5.0 TRAFFIC PROJECTION CALCULATIONS

The traffic projection calculations are described below with the calculations provided on the following pages. The projections utilize the field-collected turning movement volumes and increase them 1.5% per year, consistent with the TPO's TDM growth estimate.

5.1 AM PROJECTION CALCULATIONS

Field Collected Peak Hour Turning Movement Volumes – Existing Geometry AM summarizes the morning peak-hour field collected turning movements. The counts were collected were obtained from the previous studies performed in the last three (3) years, shown in Table 1.

Baseline / Unbalanced Peak Hour Turning Movement Volumes – Existing Geometry 2020 AM applies the seasonal variation factors as shown in Table 2 as well as uses a 1.5% annual growth rate to the volumes to inflate them to the year 2020.

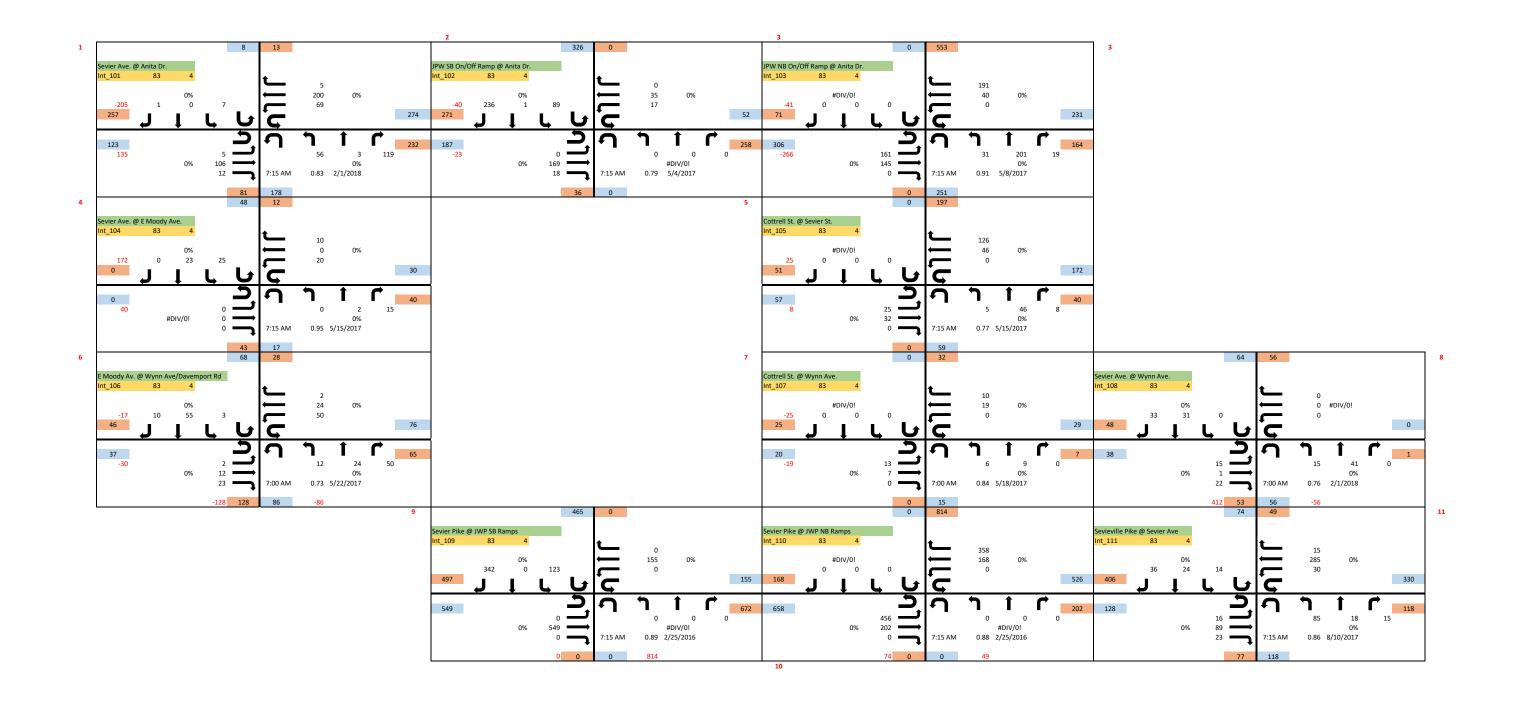
Baseline / Balanced Peak Hour Turning Movement Volumes – Existing Geometry 2020 AM adjusts the 2020 unbalanced volumes. There were small discrepancies between intersections in the field counts where vehicles departing one intersection did not sum to those entering the next. These volumes were balanced so they would be equal. The volumes at the Sevier Avenue at Anita Drive intersection were not balanced with the Sevier Avenue at E. Moody Avenue intersection due to the presence of multiple local intersecting roadways. Also, the volumes at Sevierville Pike at James White Parkway northbound ramps were not balanced with Sevierville Pike at Sevier Avenue due to the presence of multiple local intersecting roadways. In addition, since counts were not collected for the on and off ramps to James White Parkway, volumes were distributed based on the 2022 TPO TDM percentages. These volumes will be utilized in the "No Build" alternative.

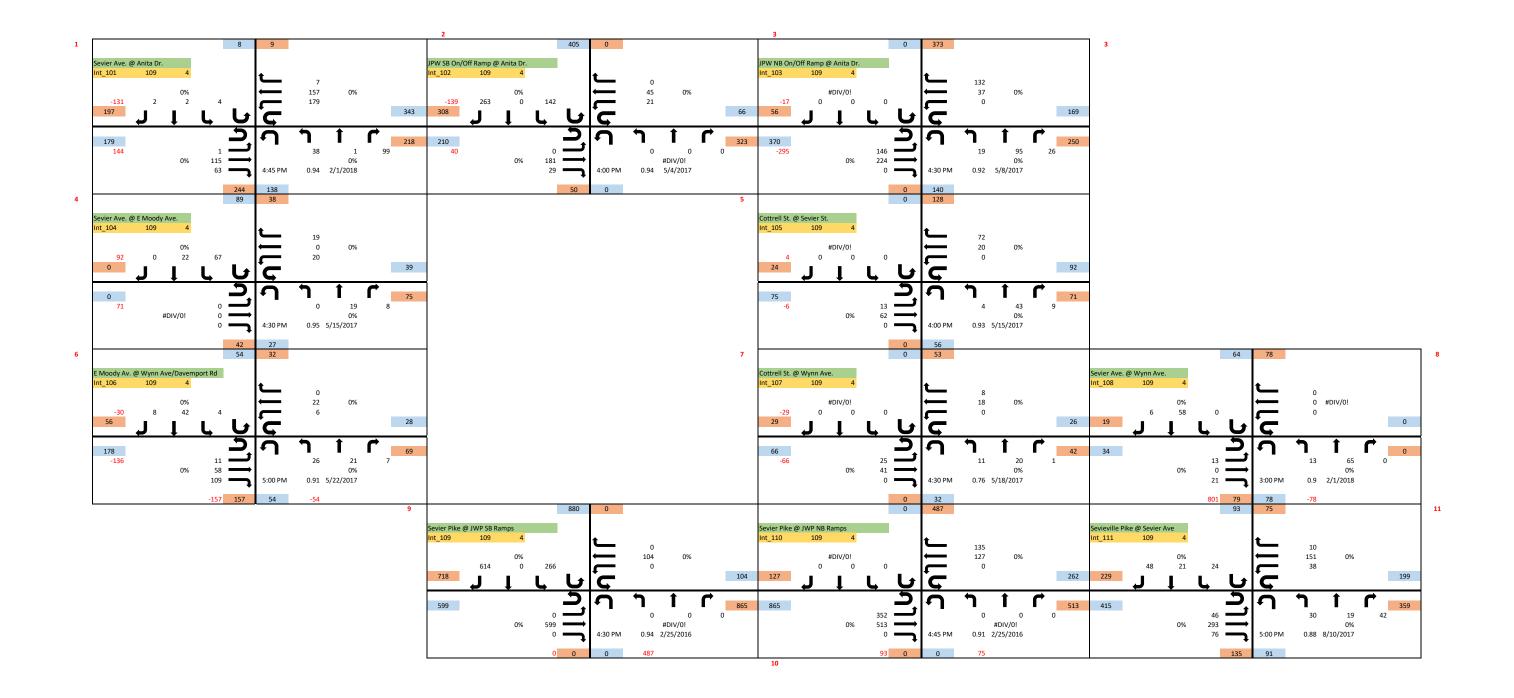
Projected / Balanced Peak Hour Turning Movement Volumes – Existing Geometry 2040 AM a pplies a 1.5% annual growth rate to the 2020 AM balanced volumes to inflate them to the year 2040. There were small rounding discrepancies that were adjusted in order to balance intersections. The same volume discrepancies shown in the 2020 models apply to 2040 as well. **These volumes will be utilized in the "No Build" alternative.**

Projected / Balanced Peak Hour Turning Movement Volumes – Proposed Geometry 2040 AM redistributes the balanced No Build volumes to account for two way travel on the western portion of James White Parkway and the new access to Urban Wilderness Gateway Park. In addition, it takes into account the removal of the two James White Parkway northbound off ramps to Cottrell Street and the James White Parkway southbound on ramp from Davenport Road. The same volume discrepancies shown in the 2040 No Build volumes still apply. The newly generated park peak hour trips are also added to this scenario. Table 6 shows the trip generation calculations. The average rate formula was used due to the lack of fitted curve for the AM trips. **These volumes will be utilized in the "Build" alternative(s).**

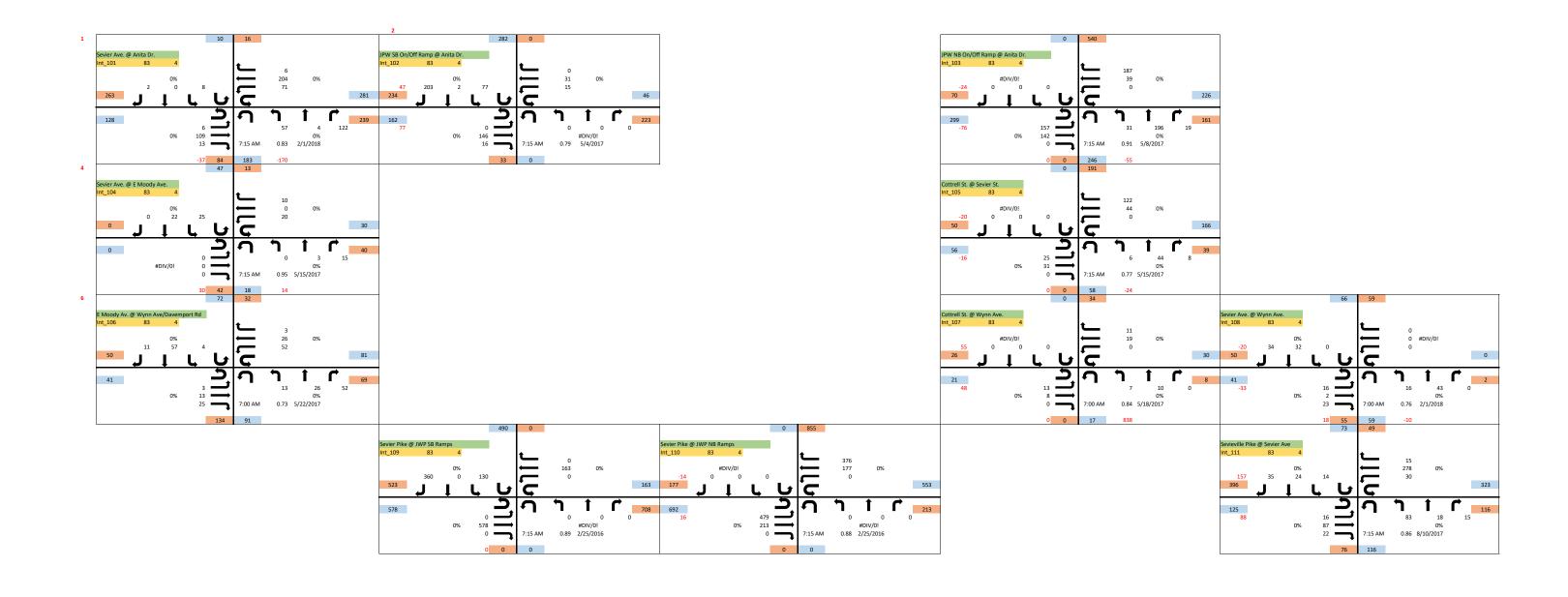
5.2 PM PROJECTION CALCULATIONS

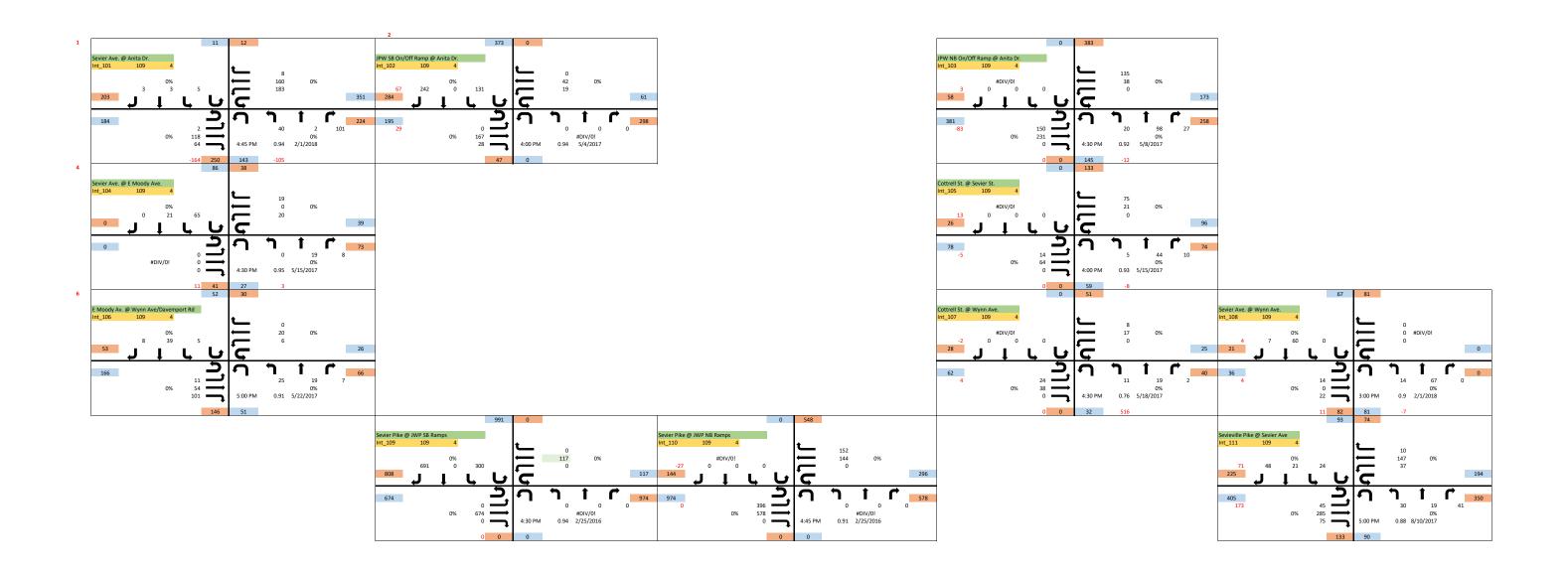
Field Collected Peak Hour Turning Movement Volumes – Existing Geometry PM summarizes the evening peak-hour field collected turning movements. The counts were collected were obtained from the previous studies performed in the last three (3) years, shown in Table 1.

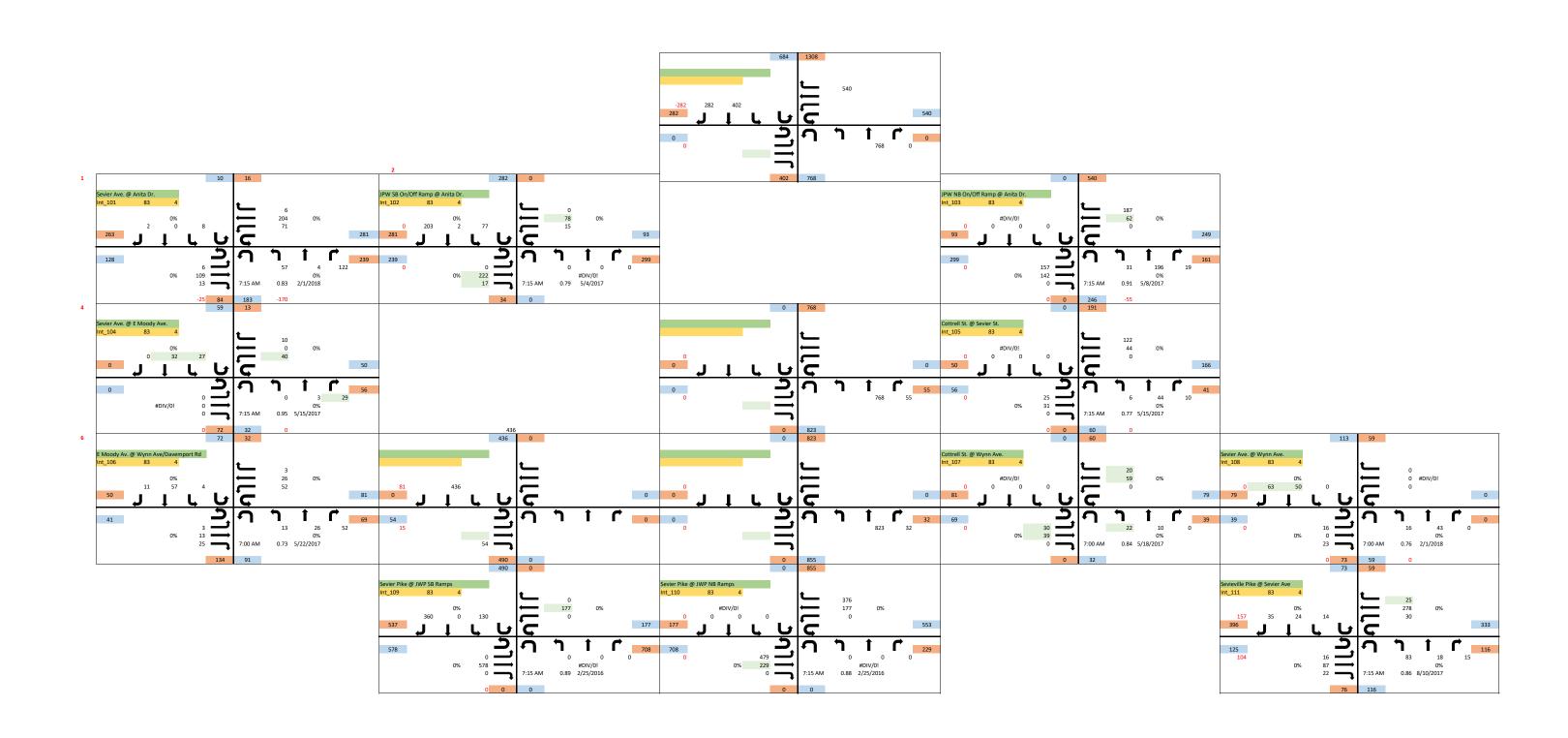

Baseline / Unbalanced Peak Hour Turning Movement Volumes – Existing Geometry 2020 PM applies the seasonal variation factors as shown in Table 2 as well as uses a 1.5% annual growth rate to the volumes to inflate them to the year 2020.

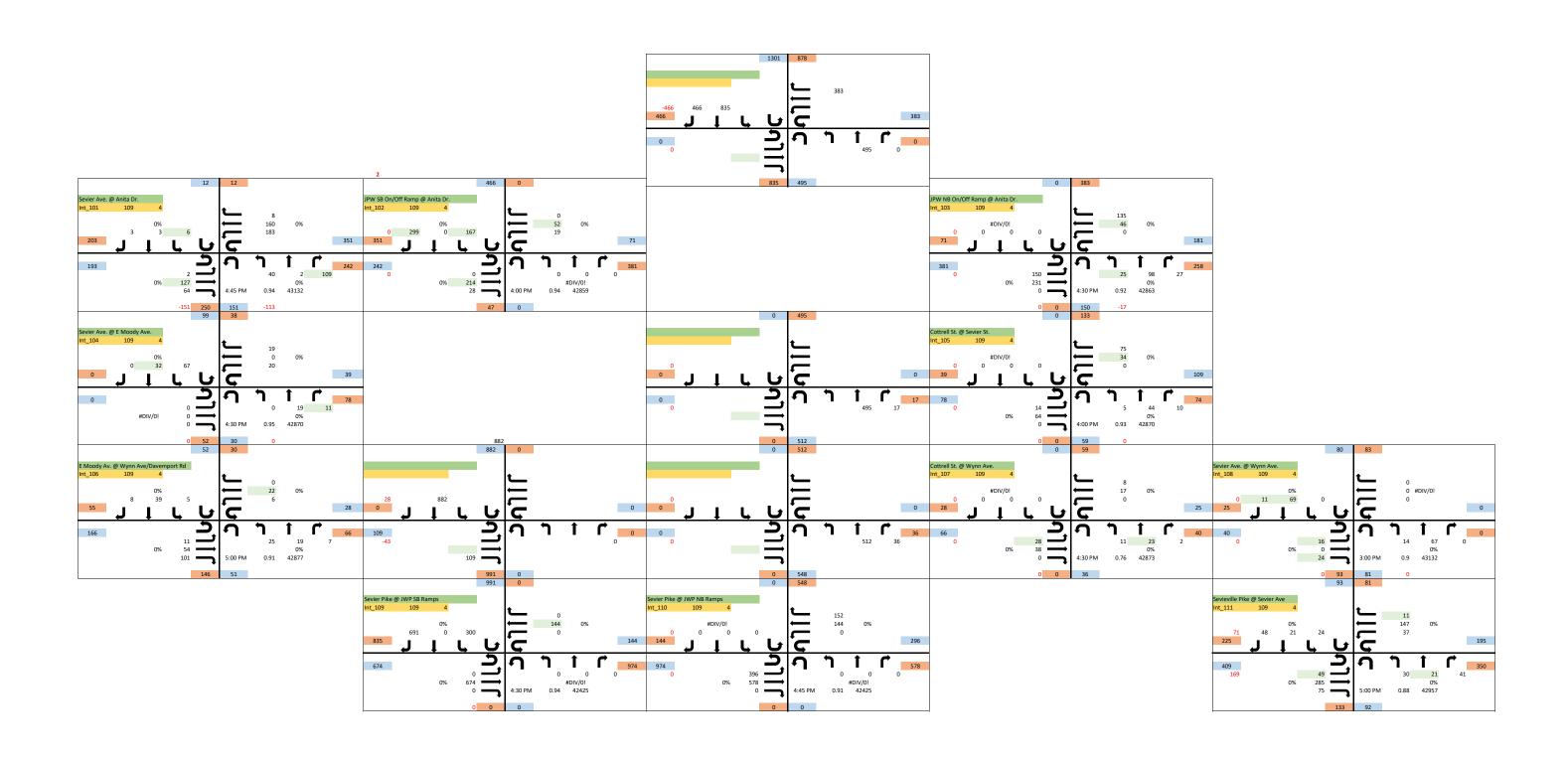

Baseline / Balanced Peak Hour Turning Movement Volumes – Existing Geometry 2020 PM adjusts the 2020 unbalanced volumes. There were small discrepancies between intersections in the field counts where vehicles departing one intersection did not sum to those entering the next. These volumes were balanced so they would be equal. The volumes at the Sevier Avenue at Anita Drive intersection were not balanced with the Sevier Avenue at E. Moody Avenue intersection due to the presence of multiple local intersecting roadways. Also, the volumes at Sevierville Pike at James White Parkway northbound ramps were not balanced with Sevierville Pike at Sevier Avenue due to the presence of multiple local intersecting roadways. In addition, since counts were not collected for the on and off ramps to James White Parkway, volumes were distributed based on the 2022 TPO TDM percentages. These volumes will be utilized in the "No Build" alternative.

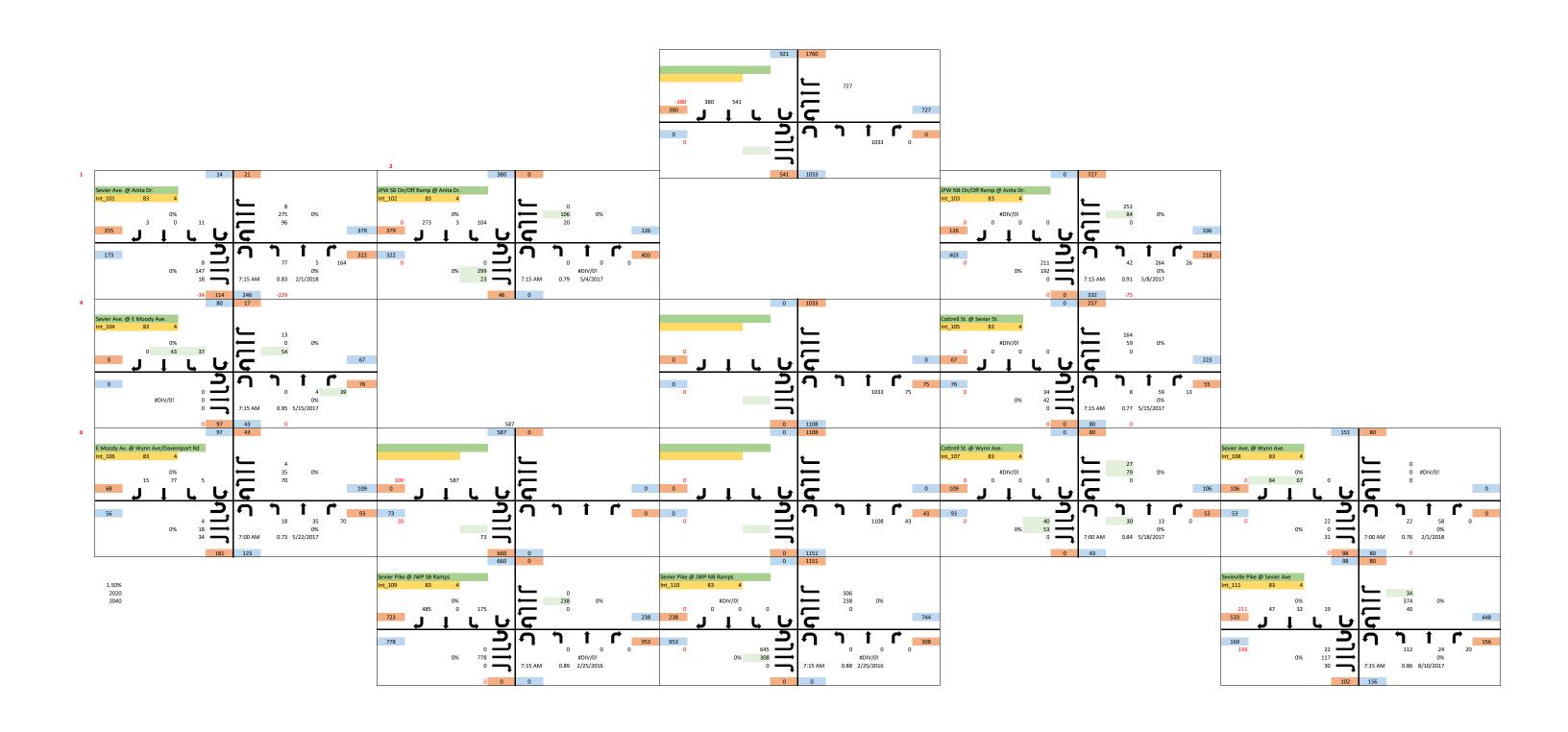
Projected / Balanced Peak Hour Turning Movement Volumes – Existing Geometry 2040 PM applies a 1.5% annual growth rate to the 2020 PM balanced volumes to inflate them to the year 2040. There were small rounding discrepancies that were adjusted in order to balance intersections. The same volume discrepancies shown in the 2020 models apply to 2040 as well. **These volumes will be utilized in the "No Build" alternative.**

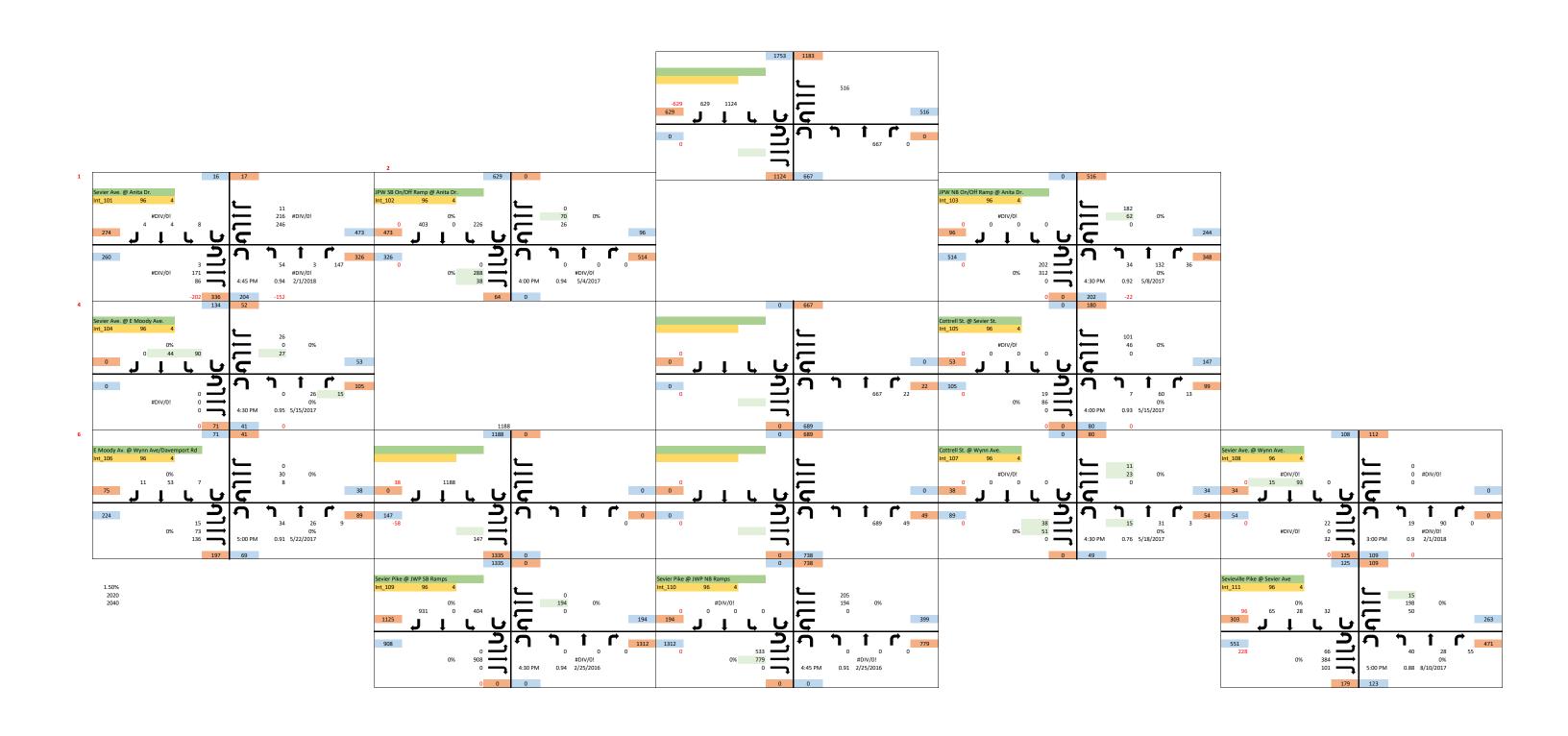

Projected / Balanced Peak Hour Turning Movement Volumes – Proposed Geometry 2040 PM redistributes the balanced No Build volumes to account for two way travel on the western portion of James White Parkway and the new access to Urban Wilderness Gateway Park. In addition, it takes into account the removal of the two James White Parkway northbound off ramps to Cottrell Street and the James White Parkway northbound on ramp from Davenport Road. The same volume discrepancies shown in the 2040 No Build volumes still apply. The newly generated park peak hour trips are also added to this scenario. Table 6 shows the trip generation calculations. The average rate formula was used due to the lack of fitted curve for the AM trips. **These volumes will be utilized in the "Build" alternative(s).**

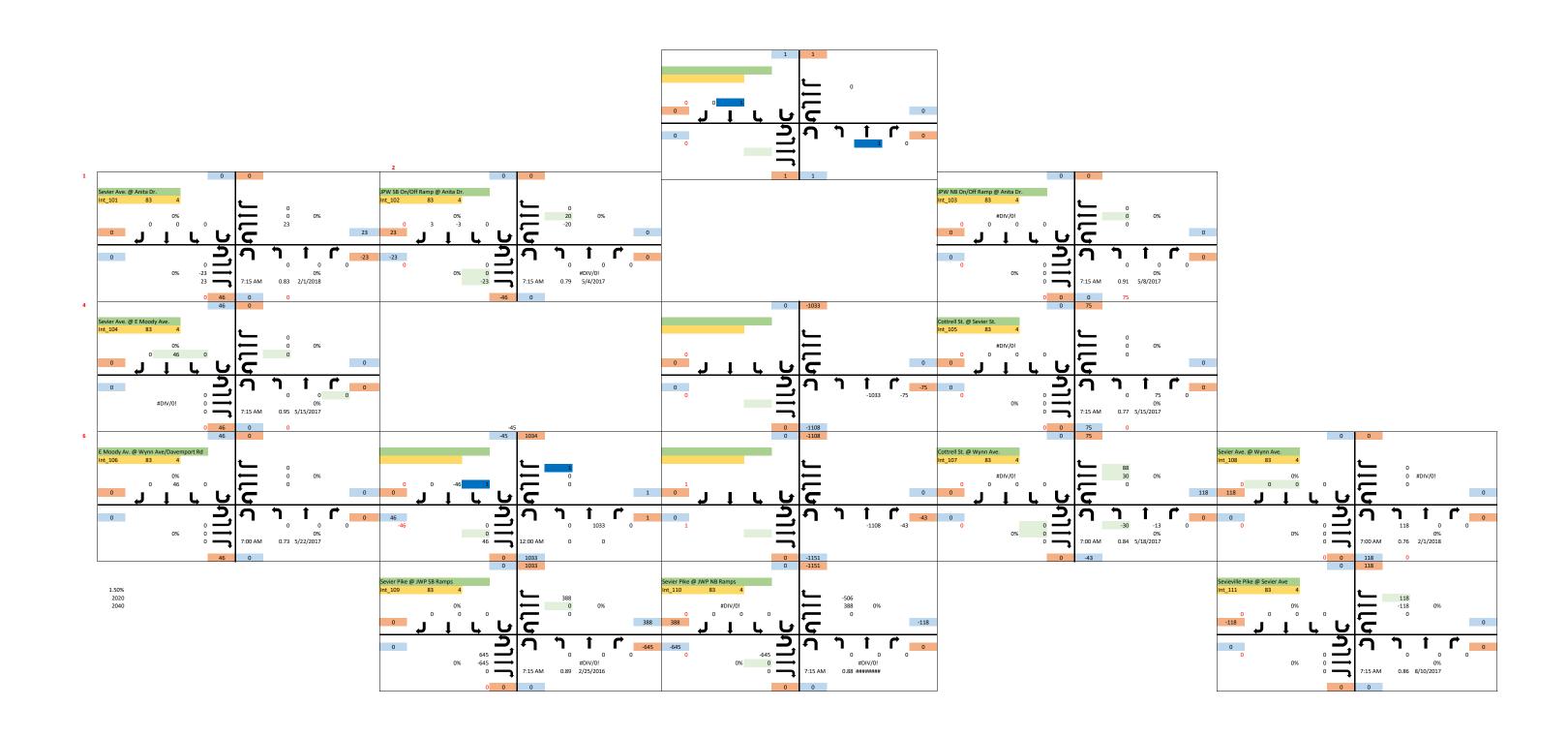

Traffic Data Field Collected Peak Hour Turning Movement Volumes - Existing Geometry 2020 AM and PM

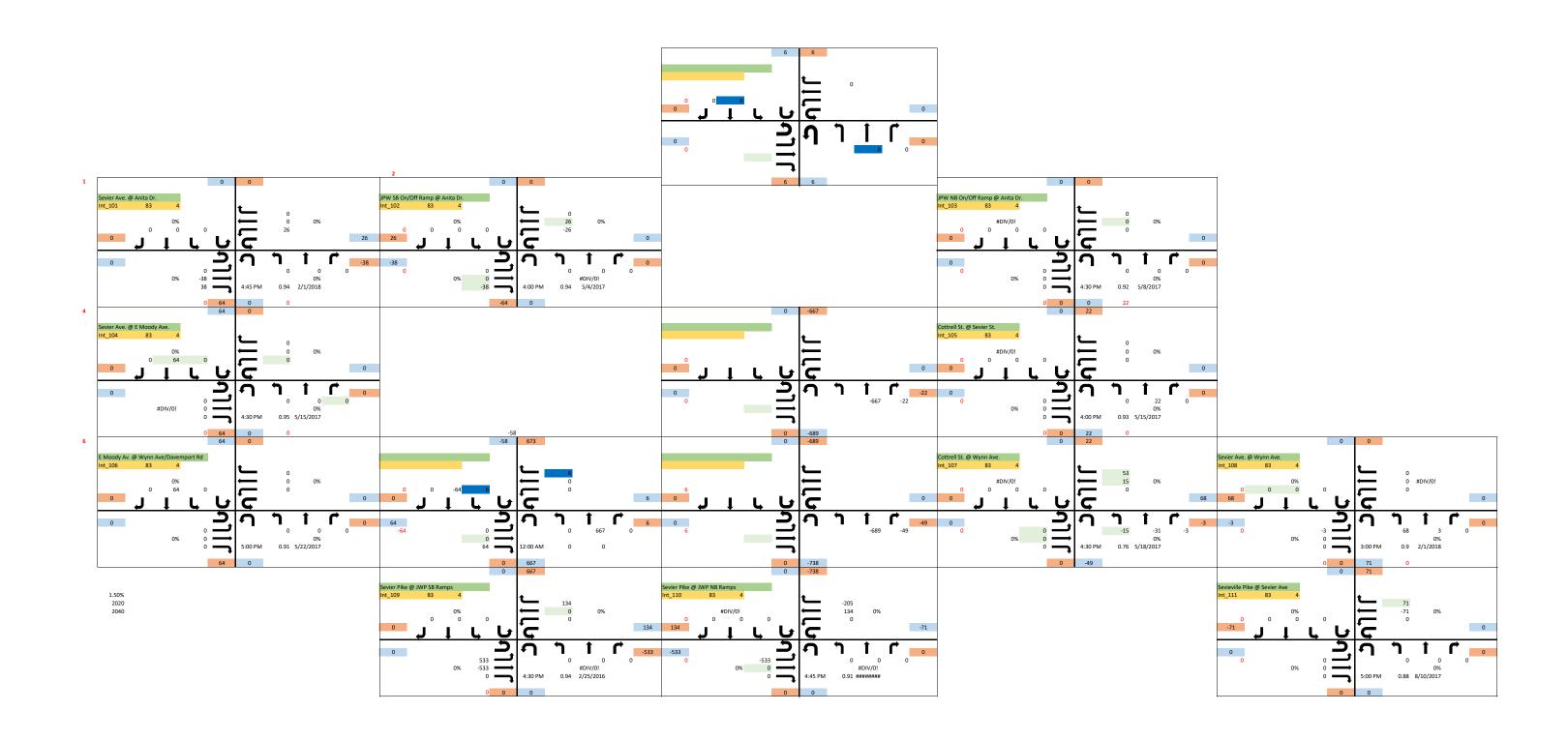


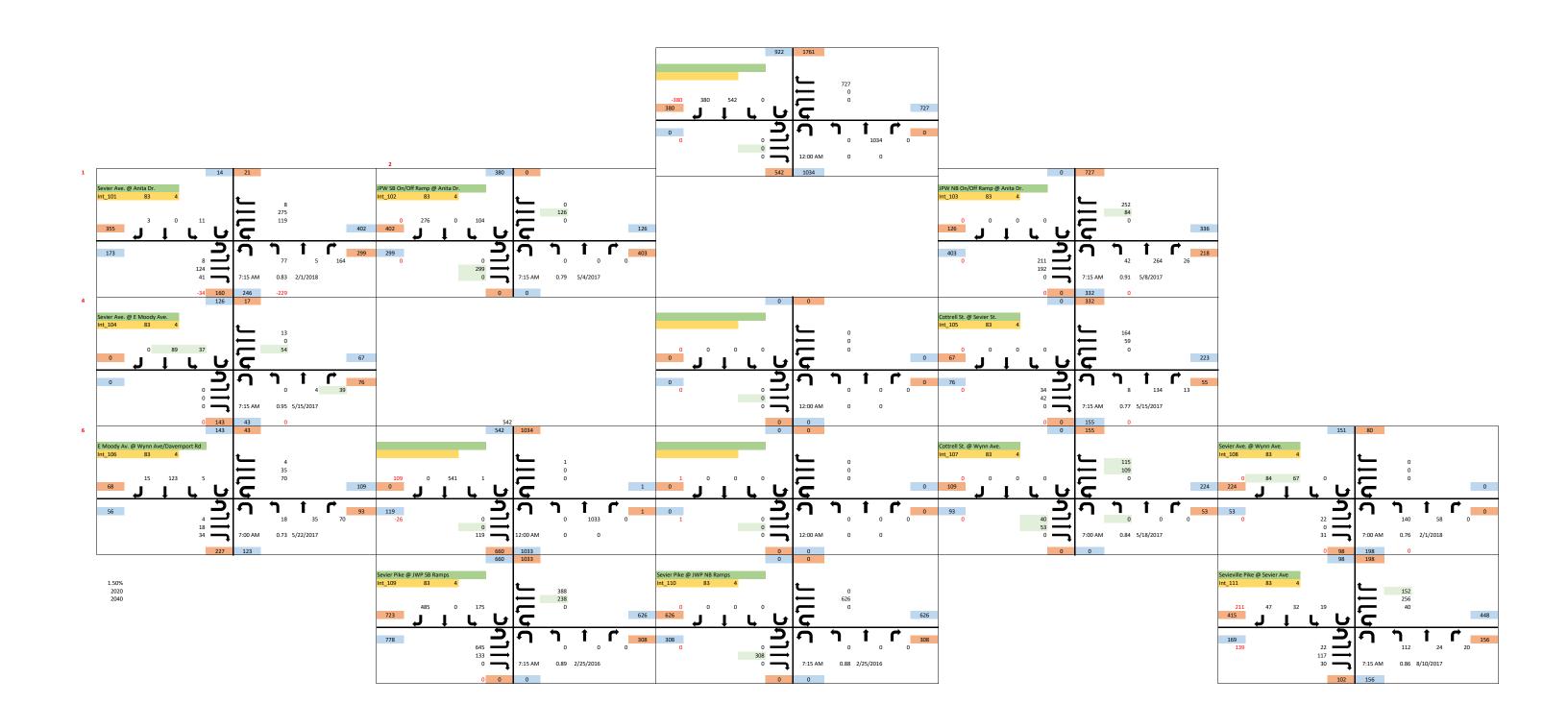

Baseline / Unbalanced Peak Hour Turning Movement Volumes - Existing Geometry

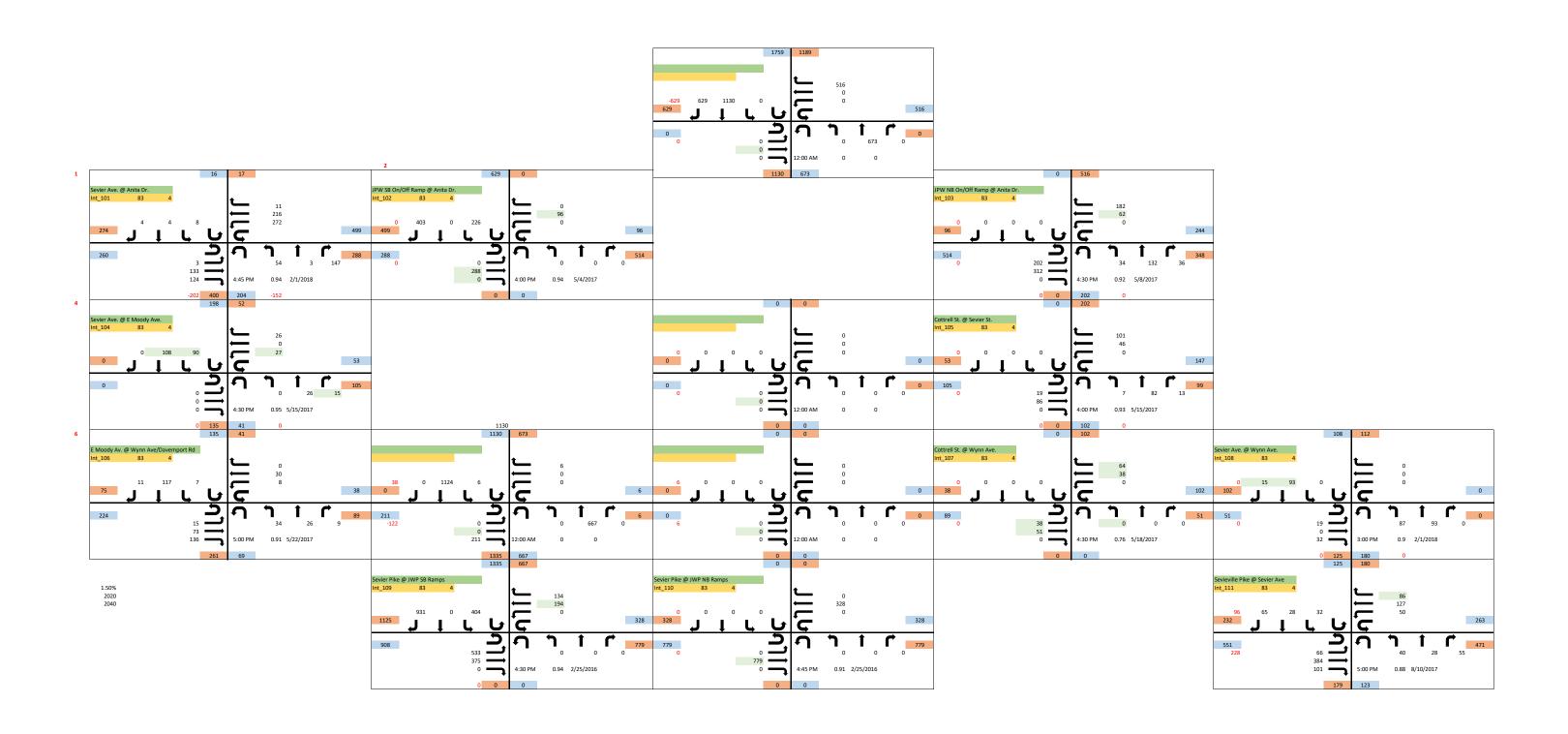



Baseline / Balanced Peak Hour Turning Movement Volumes - Existing Geometry




Future / Balanced Peak Hour Turning Movement Volumes - Existing Geometry





Future / Balanced Peak Hour Turning Movement Volumes - Proposed Geometry

Technical Memorandum – Traffic Analysis

James White Parkway Urban Wilderness Corridor Study Traffic Analysis

City of Knoxville, TN

Eor City of Knoxville Engineering 3131 Morris Avenue Knoxville, TN 37909

By Gresham Smith 2095 Lakeside Centre Way #120 Knoxville, TN 37922

Gresham Smith Project No. 44686.00 December 11, 2020

[This page left intentionally blank]

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

STRATEGIC TRANSPORTATION INVESTMENTS DIVISION

SUITE 1000, JAMES K. POLK BUILDING 505 DEADERICK STREET NASHVILLE, TENNESSEE 37243-1402 (615) 741-2208

CLAY BRIGHT COMMISSIONER BILL LEE

August 19, 2020

Mr. Jon Story Greshan Smith, Partners 222 second Avenue, Suite 1400 Nashville, TN 37201-2308

RE: James White Parkway Urban Wilderness Traffic Data Projection Study Knoxville, Knox County

Dear Mr. Story,

The Special Projects Office has reviewed the revised Traffic Data Projection Study and DHV Traffic schematics you submitted on August 18, 2020. The Study and DHV schematics have our approval. If I can be of further assisitance, please contact me.

Sincerely,

Tony Armstrong

Tony Armstrong
Transportation Manager 2

Cc: Shaun Armstrong

File

<u>Table</u>	of Contents	
	Executive Summary	1
2.0	James White Parkway Study Area Crash Analysis	1
2.1	James White Parkway Crash Analysis	
2.2	Anita Drive Crash Analysis	
2.3	Sevierville Pike Crash Analysis	.14
2.4	Summary	
3.0	Signal Warrant Analysis	.18
3.1	Signal Warrant Locations	.18
3.1	.1 Data Used in the Analysis	.20
3.1	.2 Intersection Descriptions	.20
3.1	.3 Methodology	.21
3.1	.4 Findings	.21
4.0	Fraffic Analysis	
4.1	James White Parkway Corridor Study area	.22
4.1		
4.1		
4.1		
4.1	·	
Tables		
	James White Parkway Study Area, Crash Statistics, Type of Crashes (6/1/17 – 5/31/20)	
	Crash Statistics (6/1/17 – 5/31/20)- James White Parkway Study Area Summary	
	Crash Statistics (6/1/17 – 5/31/20)- James White Parkway Study Area, Non-Intersections	
	Crash Statistics (6/1/17 – 5/31/20), James White Parkway Study Area, Intersections with 5 or m	_
	James White Parkway, Crash Statistics, tpe of Crashes (6/1/17 – 5/31/20)	
	Anita Drive, Crash Statistics, Type of Crashes (6/1/17-5/31/20)	
	Sevierville Pike, Crash Statistics, Type of Crashes (6/1/17-5/31/20)	
	Intersections Analyzed with Control Type	
Table 9	Level-of-Service Index for Intersections	. 27
): Level of Service Index (Multilane Highways)	
	: Traffic Analysis – 2020 Existing Alternative	
	2: Traffic Analysis – 2040 No Build Alternative	
	3: Traffic Analysis – 2040 Build Alternative	
l able 1	4: Multilane Roadway Analysis	. 33
Figure		_
	: James White Parkway Crash Analysis Study Area	
	: James White Parkway Study Area, Crash History (6/1/17 – 5/31/20): : James White Parkway Study area, Crashes by Time of Day (6/1/17 – 5/31/20)	
	: James White Parkway Study area, Grashes by Time of Day (6/1/17 – 5/31/20) : James White Parkway, Crash History (6/1/17-5/31/20)	
	: James White Parkway, Grash History (6/1/17-5/31/20)	
	: Anita Drive, Crash History (6/1/17-5/31/20)	
	: Anita Drive, Crashes by Time of Day (6/1/17-5/31/20)	
	: Sevierville Pike, Crash History (6/1/17-5/31/20)	
	: Sevierville Pike, Crashes by Time of Day (6/1/17-5/31/20)	
Figure 1	0: James White Parkway Signal Warrant Analysis Location	. 19
	1: James White Parkway Study Intersections	
	2: Build Alternative Single-Line Sketch	
Figure 1	3: James White Parkway at Sevierville Pike Realignment	. 26

1.0 EXECUTIVE SUMMARY

Crash Data

Crash data along James White Parkway, Anita Drive, and Sevierville Pike within the Study Area were obtained from the Tennessee Integrated Traffic Analysis Network (TITAN) database. Crash data from the most recent three years of data were utilized in the analysis (June 1, 2017 through May 31, 2020). The majority of the crashes were rear-end (39 percent) followed closely by angle (35 percent). Seventy-four (74) percent of the crashes were at intersections. Compared to statewide corridor crash rates at similar non-intersection locations, the actual corridor crash rates compared to the statewide rates (A/SW) are as follows:

•	James White Parkway	A/SW = 0.17
•	Anita Drive from Ford Place to James White Parkway	A/SW = 0.54
•	Anita Drive from Hillwood Drive to James White Parkway	A/SW = 0.00*
•	Sevierville Pike from Woodlawn Pike to James White Parkway	A/SW = 1.06
•	Sevierville Pike from James White Parkway to Compton Street	A/SW = 0.66

^{*} There were no crashes along Anita Drive

Two (2) intersections had crash rates higher than the statewide average for similar intersections:

•	Anita Drive at Cottrell Street	A/SW = 1.16
•	Sevierville Pike at Woodlawn Pike	A/SW = 2.31

Signal Warrant Analysis

Signal warrant analysis was performed at the intersections of Anita Drive at James White Parkway Southbound On/Off Ramps, Anita Drive at Cottrell Street and Sevierville Pike at Sevier Avenue/Lancaster Drive. The study intersections did not meet any of the studied warrants.

Traffic Analysis

The No Build Alternative and the Build Alternative provide adequate traffic operations through the design year of 2040. With the proposed roadway changes, the Build Alternative will adequately service the projected traffic demand.

2.0 JAMES WHITE PARKWAY STUDY AREA CRASH ANALYSIS

Figure 1 provides a map of the Study Area. Crash data along James White Parkway, Anita Drive, and Sevierville Pike within the Study Area were obtained from the Tennessee Integrated Traffic Analysis Network (TITAN) database. Crash data from the most recent three years of data were utilized in the analysis (June 1, 2017 through May 31, 2020).

In these years there were:

- 1. James White Parkway
 - a. Seven (7) reported crashes along the 1.1 miles between the beginning of James White Parkway and the Island Home overpass.
 - b. There were no (0) fatal crashes, two (2) incapacitating injury crashes, no (0) other injury crashes, and five (5) property damage only crashes.
- 2. Anita Drive Segment A
 - a. Eight (8) reported crashes along the 0.215 miles between Sevier Avenue/Ford Place and James White Parkway.
 - b. There were no (0) fatal crashes, no (0) incapacitating injury crashes, no (0) other injury crashes and eight (8) property damage only crashes.
- 3. Anita Drive Segment B
 - a. Six (6) reported crashes along the 0.23 miles between Hillwood Drive and James White Parkway.
 - b. There were no (0) fatal crashes, no (0) incapacitating injury crashes, three (3) other injury crashes and three (3) property damage only crashes.
- 4. Sevierville Pike Segment A
 - a. Forty-one (41) reported crashes along the 0.208 miles between Woodlawn Pike and James White Parkway.
 - b. There were no (0) fatal crashes, one (1) incapacitating injury crash, nine (9) other injury crashes and thirty-one (31) property damage only crashes.
- 5. Sevierville Pike Segment B
 - a. Ten (10) reported crashes along the 0.115 miles between James White Parkway and Compton Street.
 - b. There were no (0) fatal crashes, no (0) incapacitating injury crashes, no (0) other injury crashes and ten (10) property damage only crashes.

Figure 2 plots the crash locations within the Study Area. **Figure 3** charts the crashes by time of day along James White Parkway, Anita Drive and Sevierville Pike. The majority of crashes occurred between 1:00 PM and 7:00 PM. **Table 1** through **Table 4** summarizes the crash statistics along James White Parkway, Anita Drive and Sevierville Pike.

Table 1 lists information concerning the types of crashes observed. The majority of the crashes were rear-end (39 percent) followed closely by angle (35 percent). These types of crashes are typically intersection-related, and the data demonstrate that 74 percent of the crashes were at intersections. Seventy-six (76) percent of the crashes occurred in dry road conditions and 74 percent during daylight hours. The data do not demonstrate any roadway condition in need of improvement.

Table 2 lists overall crash data. Seven (7) of the 72 crashes occurred along James White Parkway. Two (2) were incapacitating injury crashes, none (0) were minor injury crashes and five (5) were property damage only crashes. Fourteen (14) of the 72 crashes occurred along Anita Drive. Three (3) were minor injury cashes and eleven (11) were property damage only crashes.

Fifty-one (51) of the 72 crashes occurred along Sevierville Pike. One (1) was an incapacitating injury crash, nine (9) were minor injury crashes, and forty-one (41) were property damage only crashes.

Corridor crash rates are calculated with non-intersection crashes. **Table 3** lists all non-intersection crashes and shows:

James White Parkway had a crash rate of 0.410 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, Freeway) is 2.457. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 0.17.

Segment A of Anita Drive from Sevier Avenue/Ford Place to James White Parkway had a crash rate of 1.634 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, 4-Lane Divided) is 3.047. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 0.54.

Segment B of Anita Drive from Hillwood Drive to James White Parkway did not have any non-intersection crashes.

Segment A of Sevierville Pike from Woodlawn Pike to James White Parkway had a crash rate of 4.04 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, 2 Lane W/TL) is 3.817. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 1.06.

Segment B of Sevierville Pike from James White Parkway to Compton Street had a crash rate of 2.529 crashes per million vehicle miles travelled. The statewide rate for similar roadways (Urban Functional Route, 2 Lane W/TL) is 3.817. Therefore, the ratio of the actual crash rate to the statewide crash rate (A/SW) at non-intersection locations is 0.66.

Therefore, the actual corridor crash rate at non-intersection locations along all corridors is less than the statewide average crash rates for similar corridors except Segment A of Sevierville Pike from Woodlawn Pike to James White Parkway.

Table 4 lists the crash rates of intersections that had five (5) or more crashes between June 1, 2017 and May 31, 2020 within the analysis area. Of the four (4) intersections with five (5) or more crashes, two (2) had crash rates higher than the statewide average for similar intersections. The intersection of Anita Drive at Cottrell Street is stop controlled on all approaches. This intersection has a median along Anita Drive that allows travel across Anita Drive. The crash rate is 1.16x higher than the statewide average of similar intersections. The intersection of Sevierville Pike at Woodlawn Pike is a signalized intersection. This intersection allows full movements and has left-turn lanes on both Sevierville Pike and Woodlawn Pike approaches. The crash rate of Sevierville Pike at Woodlawn Pike is 2.31x higher than the statewide average of similar intersections.

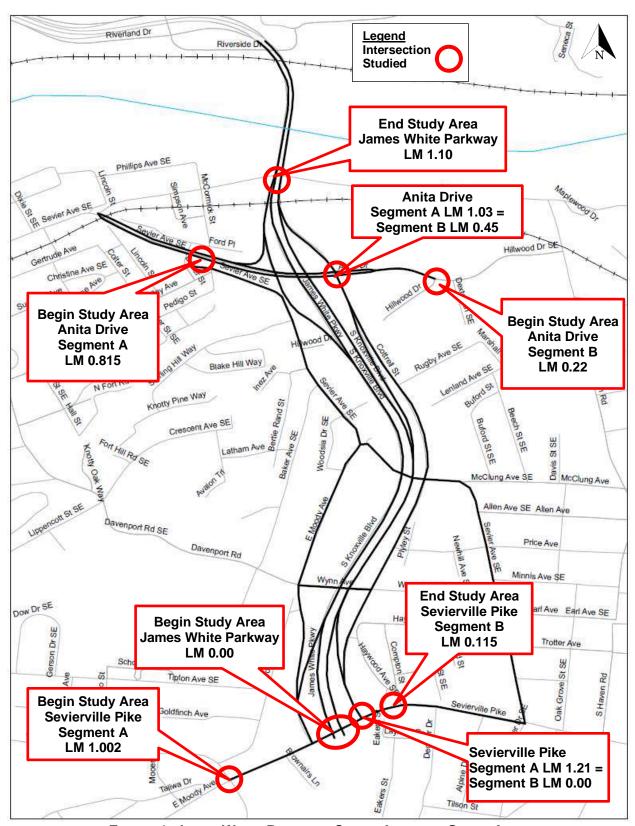


FIGURE 1: JAMES WHITE PARKWAY CRASH ANALYSIS STUDY AREA

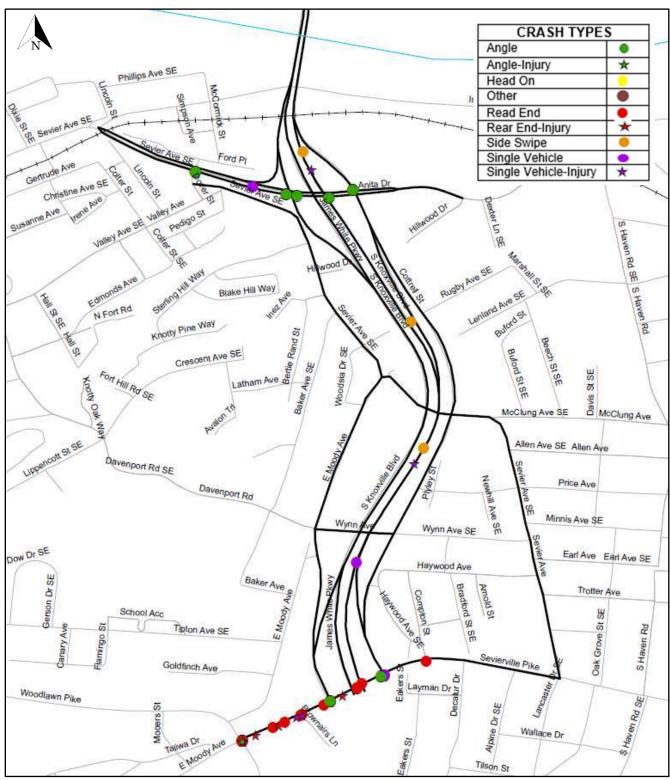


FIGURE 2: JAMES WHITE PARKWAY STUDY AREA, CRASH HISTORY (6/1/17 – 5/31/20)

Source: TITAN Database

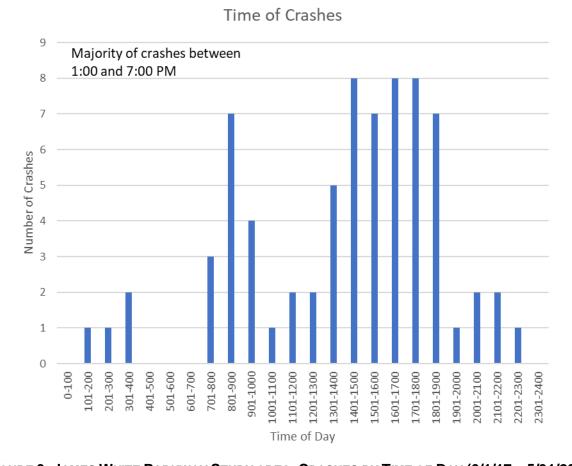


FIGURE 3: JAMES WHITE PARKWAY STUDY AREA, CRASHES BY TIME OF DAY (6/1/17 - 5/31/20)

Table 1: James White Parkway Study Area, Crash Statistics, Type of Crashes (6/1/17 - 5/31/20)

	Stud	y Area				
Condition	Number of	Percentage of				
	Crashes	Total				
	Sev	erity				
Fatal	0	0%				
Incap. Injury	3	4%				
Other Injury	12	17%				
PDO	57	79%				
	Manner o	f Collision				
Angle	25	35%				
Rear-End	28	39%				
Single Car	8	11%				
Sideswipe Same Dir.	3	4%				
Head-On	1	1%				
Rear-to-Rear	6	8%				
Unknown	1	1%				
	Road Co	onditions				
Ice	0	0%				
Snow	0	0%				
Sand/Mud/Dirt	0	0%				
Wet	17	24%				
Dry	55	76%				
	Light Co	ondition				
Daylight	53	74%				
Dusk	3	4%				
Dark/Lighted	13	18%				
Dark/Not Lighted	3	4%				
Not Indicated	0	0%				
	Crash Location					
Along Roadway	19	26%				
At Intersection	53	74%				
Total		72				

TABLE 2: CRASH STATISTICS	(6/1/17 – 5/31/20)	- JAMES WHITE PARKWAY STUDY AREA SUMMARY
---------------------------	--------------------	--

Route	Begin		End		Dist.	AADT	Crashes					Overall	Severity
	LM	Description	LM	1 Description		2019	Total	Fatal	Incap. Inj.	Other Inj.	PDO	Rate	Index
James White Pkwy	0	Begin	1.1	Island Home Overpass 1.		14,160	7		2		5	0.410	0.57
Anita Dr	0.815	Sevier Ave/Ford Pl	1.03	James White Pkwy	0.215	5,200	8				8	6.535	0.00
Anita Dr	0.22	Hillwood Drive	0.45	James White Pkwy	0.230	4,000	6			3	3	5.956	0.50
Sevierville Pike	1.002	Woodlawn Pike	1.21	James White Pkwy	0.208	9,780	41		1	9	31	18.406	0.27
Sevierville Pike	0.000	James White Pkwy	0.115	0.115 Compton Street 0.		3,140	10				10	25.291	0.00
	Total:				1.9		72	0	3	12	57		

TABLE 3: CRASH STATISTICS (6/1/17 - 5/31/20)- JAMES WHITE PARKWAY STUDY AREA, NON-INTERSECTIONS

Route	Begin	End		nd Di		AADT	Crashes			Overall	Severity	Statewide	Actual/		
	LM	Description	LM	Description		2019	Total	Fatal	Incap. Inj.	Other Inj.	PDO	Rate	Index	Rate	Statewide
James White Pkwy	0	Begin	1.1	Island Home Overpass	1.100	14,160	7		2		5	0.410	0.57	2.457	0.17
Anita Dr	0.815	Sevier Ave/Ford Pl	1.03	James White Pkwy	0.215	5,200	2				2	1.634	0.00	3.047	0.54
Anita Dr	0.22	Hillwood Drive	0.45	James White Pkwy	0.230	4,000	0					0.000	0.00	3.047	0.00
Sevierville Pike	1.002	Woodlawn Pike	1.21	James White Pkwy	0.208	9,780	9		1	3	5	4.040	0.56	3.817	1.06
Sevierville Pike	0.000	James White Pkwy	0.115	Compton Street	0.115	3,140	1				1	2.529	0.00	3.817	0.66

Notes: Statewide average crash rate for similar facilities (Urban Functional Route, Freeway) is 2.457 crashes per million vehicle miles Statewide average crash rate for similar facilities (Urban Functional Route, 4-Lane Divided) is 3.047 crashes per million vehicle miles Statewide average crash rate for similar facilities (Urban Functional Route, 2-Lane W/TL) is 3.817 crashes per million vehicle miles

TABLE 4: CRASH STATISTICS (6/1/17 - 5/31/20), JAMES WHITE PARKWAY STUDY AREA, INTERSECTIONS WITH 5 OR MORE CRASHES

				ADT Mainline		ADT Side Road		Three Year Total		Statewide	Actual/
ID	LM	Route	Side Road	West	East	North	South	# Crashes	Rate	Rate	Statewide
1	0.39	Anita Drive	Cottrell Street	4,000	4,000	2,460	2,460	6	0.85	0.731	1.16
2	1.002	Sevierville Pike	Woodlawn Pike	9,780	9,780	2,220	2,220	18	1.37	0.592	2.31
3	1.153	Sevierville Pike	James White Parkway SB Ramp	9,780	9,780	14,160	14,160	9	0.34	0.592	0.58
4	0.048	Sevierville Pike	James White Parkway NB Ramp	3,140	3,140	14,160	14,160	8	0.42	0.592	0.71

Notes: SW Rate for urban full stop intersections on multi-lane divided facilities (2014-2016):

SW Rate for urban signalized intersections on two lane facilities with turn lanes (2014-2016):

0.731 0.592

2.1 JAMES WHITE PARKWAY CRASH ANALYSIS

Figure 4 plots the crash locations along James White Parkway. **Figure 5** charts the crashes by time of day along James White Parkway. The majority of crashes occurred between 2:00 PM and 3:00 PM. **Table 5** summarizes the crash statistics along James White Parkway and lists information concerning the types of crashes observed. The majority of the crashes were single car (43 percent) and sideswipe (43 percent). Eighty-six (86) percent of the crashes occurred in dry road conditions and 86 percent during daylight hours. The data do not demonstrate any roadway condition in need of improvement.

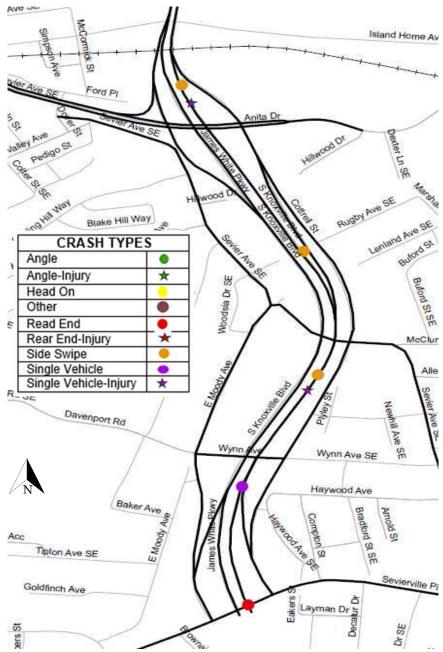


FIGURE 4: JAMES WHITE PARKWAY, CRASH HISTORY (6/1/17-5/31/20)
Source: TITAN Database

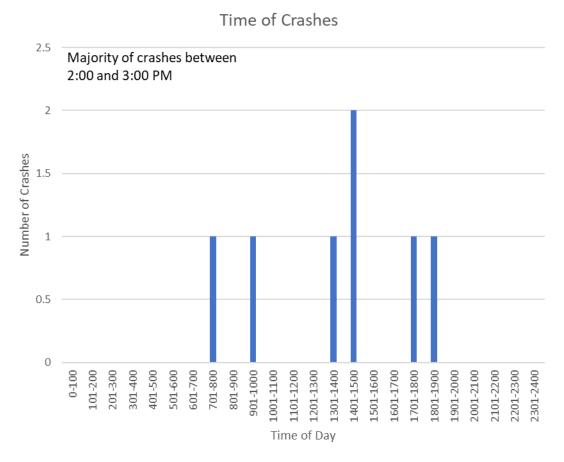


FIGURE 5: JAMES WHITE PARKWAY, CRASHES BY TIME OF DAY (6/1/17-5/31/20)

TABLE 5: JAMES WHITE PARKWAY, CRASH STATISTICS, TPE OF CRASHES (6/1/17 - 5/31/20)

	Stud	y Area
Condition	Number of	Percentage of
	Crashes	Total
	Sev	erity
Fatal	0	0%
Incap. Injury	2	29%
Other Injury	0	0%
PDO	5	71%
	Manner o	f Collision
Angle	0	0%
Rear-End	0	0%
Single Car	3	43%
Sideswipe Same Dir.	3	43%
Head-On	0	0%
Rear-to-Rear	1	14%
Unknown	0	0%
	Road Co	nditions
Ice	0	0%
Snow	0	0%
Sand/Mud/Dirt	0	0%
Wet	1	14%
Dry	6	86%
	Light C	ondition
Daylight	6	86%
Dark/Lighted	1	14%
Not Indicated	0	0%
	Crash I	ocation
Along Roadway	7	100%
At Intersection	0	0%
Total		7

2.2 ANITA DRIVE CRASH ANALYSIS

Figure 6 plots the crash locations along Anita Drive. **Figure 7** charts the crashes by time of day along Anita Drive. The majority of crashes occurred between 8:00 AM and 9:00 AM. **Table 6** summarizes the crash statistics along Anita Drive and lists information concerning the types of crashes observed. The majority of the crashes were angle (79 percent). These types of crashes are typically intersection-related, and the data demonstrate that 86 percent of the crashes were at intersections. Seventy-nine (79) percent of the crashes occurred in dry road conditions and 93 percent during daylight hours. The data do not demonstrate any roadway condition in need of improvement.

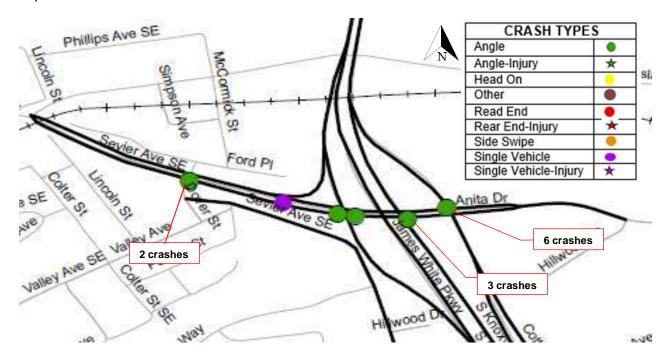


FIGURE 6: ANITA DRIVE, CRASH HISTORY (6/1/17-5/31/20)
Source: TITAN Database

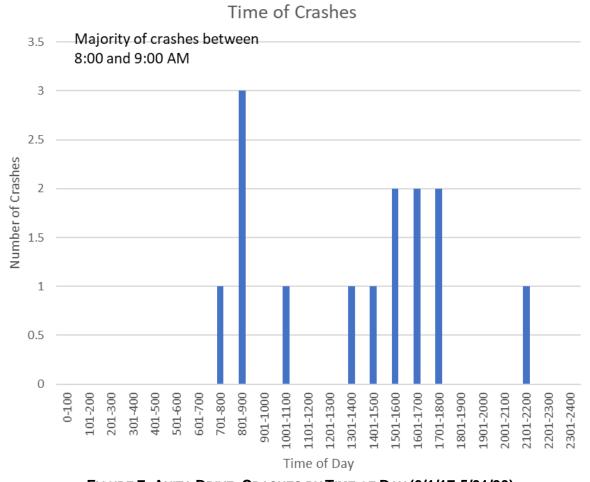


FIGURE 7: ANITA DRIVE, CRASHES BY TIME OF DAY (6/1/17-5/31/20)

TABLE 6: ANITA DRIVE, CRASH STATISTICS, TYPE OF CRASHES (6/1/17-5/31/20)

	Stud	y Area				
Condition	Number of	Percentage of				
	Crashes	Total				
	Severity					
Fatal	0	0%				
Incap. Injury	0	0%				
Other Injury	3	21%				
PDO	11	79%				
	Manner o	f Collision				
Angle	11	79%				
Rear-End	1	7%				
Single Car	1	7%				
Sideswipe Same Dir.	0	0%				
Head-On	0	0%				
Rear-to-Rear	0	0%				
Unknown	1	7%				
	Road Co	onditions				
Ice	0	0%				
Snow	0	0%				
Sand/Mud/Dirt	0	0%				
Wet	3	21%				
Dry	11	79%				
	Light Co	ondition				
Daylight	13	93%				
Dark/Lighted	1	7%				
Not Indicated	0	0%				
	Crash l	ocation				
Along Roadway	2	14%				
At Intersection	12	86%				
Total		14				

2.3 SEVIERVILLE PIKE CRASH ANALYSIS

Figure 8 plots the crash locations along Sevierville Pike. **Figure 9** charts the crashes by time of day along Sevierville Pike. The majority of crashes occurred between 2:00 PM and 7:00 PM. **Table 7** summarizes the crash statistics along Sevierville Pike and lists information concerning the types of crashes observed. The majority of the crashes were rear-end (53 percent) followed by angle (27 percent). These types of crashes are typically intersection-related, and the data demonstrate that 80 percent of the crashes were at intersections. Seventy-five (75) percent of the crashes occurred in dry road conditions and 67 percent during daylight hours. The data do not demonstrate any roadway condition in need of improvement.

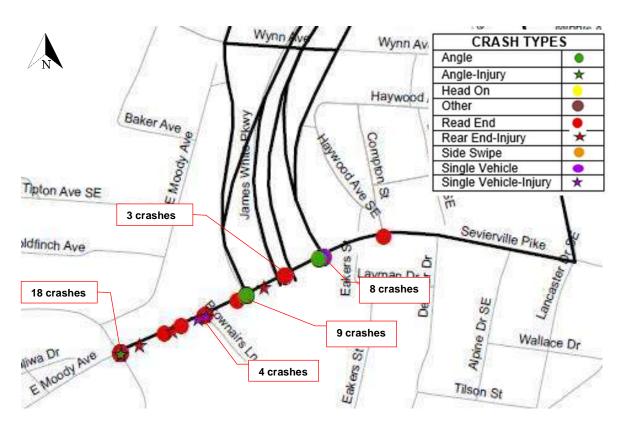


FIGURE 8: SEVIERVILLE PIKE, CRASH HISTORY (6/1/17-5/31/20)
Source: TITAN Database

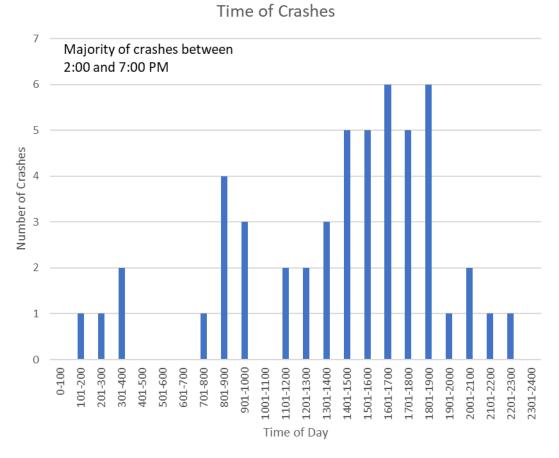


FIGURE 9: SEVIERVILLE PIKE, CRASHES BY TIME OF DAY (6/1/17-5/31/20)

TABLE 7: SEVIERVILLE PIKE, CRASH STATISTICS, TYPE OF CRASHES (6/1/17-5/31/20)

	Stud	y Area				
Condition	Number of	Percentage of				
	Crashes	Total				
	Severity					
Fatal	0	0%				
Incap. Injury	1	2%				
Other Injury	9	18%				
PDO	41	80%				
	Manner o	f Collision				
Angle	14	27%				
Rear-End	27	53%				
Single Car	4	8%				
Sideswipe Same Dir.	0	0%				
Head-On	1	2%				
Rear-to-Rear	5	10%				
Unknown	0	0%				
	Road Co	onditions				
Ice	0	0%				
Snow	0	0%				
Sand/Mud/Dirt	0	0%				
Wet	13	25%				
Dry	38	75%				
	Light C	ondition				
Daylight	34	67%				
Dusk	3	6%				
Dark/Lighted	11	22%				
Dark/Not Lighted	3	6%				
Not Indicated	0	0%				
	Crash Location					
Along Roadway	10	20%				
At Intersection	41	80%				
Total	51					

2.4 SUMMARY

Crash data along James White Parkway, Anita Drive, and Sevierville Pike within the Study Area were obtained from the Tennessee Integrated Traffic Analysis Network (TITAN) database. Crash data from the most recent three years of data were utilized in the analysis (June 1, 2017 through May 31, 2020). The majority of the crashes were rear-end (39 percent) followed closely by angle (35 percent). Seventy-four (74) percent of the crashes were at intersections. One corridor segment, Sevierville Pike between Woodlawn Pike and James White Parkway, had a crash rate higher than the statewide average for a similar roadway type. Two (2) intersections had crash rates higher than the statewide average for similar intersections; Anita Drive at Cottrell Street and Sevierville Pike at Woodlawn Pike. The Sevierville Pike at Woodlawn Pike has the highest crash rate at 2.31x the statewide average of similar intersections.

3.0 SIGNAL WARRANT ANALYSIS

3.1 SIGNAL WARRANT LOCATIONS

Gresham Smith, at the request of The City of Knoxville Engineering Department, conducted an engineering study of traffic conditions, pedestrian characteristics, and physical characteristics of three study area intersections to determine whether installation of a traffic control signal is justified. A traffic signal warrant analysis was performed for the existing year at the following intersections:

- 1. Anita Drive at James White Parkway's Southbound On/Off Ramps
- 2. Anita Drive at Cottrell Street
- 3. Sevierville Pike at Sevier Avenue/Lancaster Drive

A map of the intersections is provided in Figure 10.

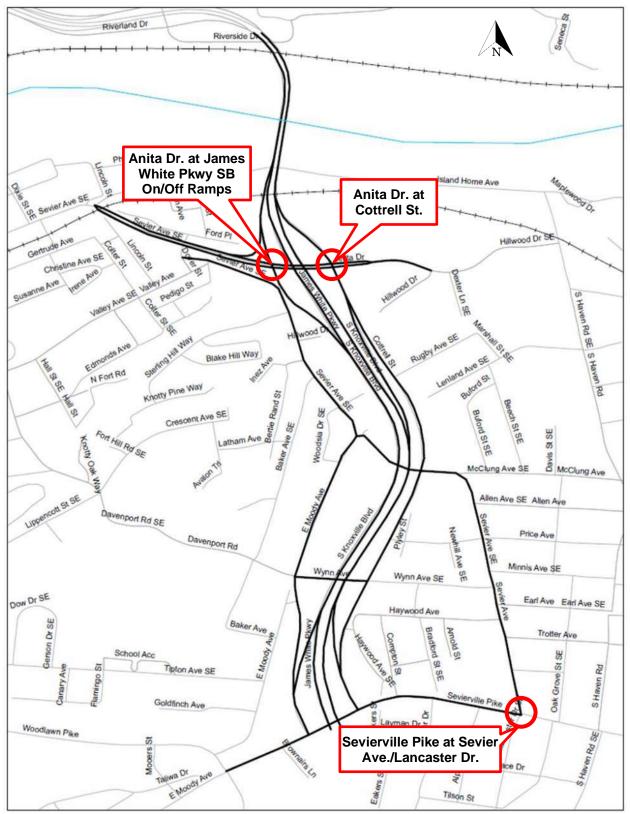


FIGURE 10: JAMES WHITE PARKWAY SIGNAL WARRANT ANALYSIS LOCATION

3.1.1 Data Used in the Analysis

- Traffic Volumes (approved in Traffic Data memo dated 8/18/2020)
 - Baseline Turning Movement Volumes: Counts collected in 2017 adjusted to 2020 using TDOT's seasonal variation factors and an annual 1.5% growth rate (6 hours: 7AM-9AM; 11AM-1PM; 4PM-6PM)
- Manual on Uniform Traffic Control Devices (MUTCD) 2009 Edition, Revision 2 dated May 2012
- Highway Capacity Software (HCS7) Warrants Module (2020 Version 7.8.5)

3.1.2 Intersection Descriptions

• Anita Drive at James White Parkway Southbound On/Off Ramps

Anita Drive is an east-west roadway with a posted speed limit of 35 miles per hour. It is functionally classified as an Urban Minor Arterial. Anita Drive has two travel lanes in each direction that are separated by a raised concrete and grass median with a westbound left turn lane at the James White Parkway Southbound ramp intersection. Anita Drive free flows at this intersection. The closest signalized intersection along Anita Drive to the subject intersection is approximately 0.55 miles to the west, at Barber Street.

James White Parkway is a north-south roadway with a posted speed limit of 55 miles per hour on the mainline and a 35 mile per hour advisory speed plaque on the southbound off ramp. It is functionally classified as a Freeway. The southbound approach is stop sign controlled approaching Anita Drive. A stop sign is present, but a stop line is not. The southbound approach consists of a single left turn lane and a channelized yield-control right turn lane. There are no crosswalks at this intersection.

Anita Drive at Cottrell Street/James White Parkway Northbound On Ramp

Anita Drive is an east-west roadway with a posted speed limit of 35 miles per hour. It is functionally classified as an Urban Minor Arterial. Anita Drive has two travel lanes in each direction that are separated by a raised concrete median with an eastbound left turn lane at the Cottrell Street intersection. Anita Drive is controlled by stop signs and stop lines on both approaches at this intersection. The closest signalized intersection along Anita Drive to the subject intersection is approximately 0.66 miles to the west, at Barber Street.

Cottrell Street is a north-south roadway with a posted speed limit of 35 miles per hour. It is functionally classified as an Urban Local Route. The northbound approach is stop sign controlled approaching Anita Drive. A stop sign with a stop line is present on the northbound approach. The southbound approach consists of a single shared thru-left turn lane and a channelized yield-control right turn lane. There are no crosswalks at this intersection.

Sevierville Pike at Sevier Avenue/Lancaster Drive

Sevierville Pike is an east-west roadway with a posted speed limit of 30 miles per hour. It is functionally classified as a Major Collector. Sevierville Pike is an undivided two-lane roadway and is stop controlled at the Sevier Avenue/Lancaster Drive intersection. There is a westbound yield controlled channelized right turn. The closest signalized intersection

along Sevierville Pike to the subject intersection is approximately 0.25 miles to the west, at the James White Parkway Northbound On ramp.

North of Sevierville Pike, Sevier Avenue is an undivided two-lane roadway with a posted speed limit of 30 miles per hour. It is functionally classified as an Urban Local Road. South of Sevierville Pike, Lancaster Drive is an undivided two-lane roadway with a posted speed limit of 30 miles per hour. It is functionally classified as an Urban Local Road.

Both approaches are single lanes and are controlled by a stop sign with a stop line approaching Sevierville Pike. There are no crosswalks at this Intersection.

3.1.3 Methodology

Traffic data were collected between the hours of 6:00 to 9:00 AM, 11:00 AM to 1:00 PM, and 4:00 to 6:00 PM, consistent with Tennessee Department of Transportation (TDOT) guidance for traffic turning movement data collection. The signal warrant analysis was developed based upon standards in the MUTCD and developed with the HCS Warrants Module. The traffic volumes for the hours from 9:00 to 11:00 AM and 1:00 to 4:00 PM were interpolated using engineering judgment in order to input 12 continuous hours into the HCS Warrants Module.

3.1.4 Findings

Traffic signal warrant analysis for the existing year at all three study intersections were completed and the vehicular volume warrants (Warrants 1-3) were not met for any of the intersections.

4.0 TRAFFIC ANALYSIS

4.1 JAMES WHITE PARKWAY CORRIDOR STUDY AREA

Figure 11 provides a map of the Study Area. The limits of the study area along James White Parkway will extend from the bridge over the Tennessee River to the north, to Sevierville Pike to the south. In addition, the study area includes Cottrell Street to the east, Sevier Avenue/E. Moody Avenue to the west, and the interchange of James White Parkway at Sevier Avenue / Anita Drive. **Table 8** shows the intersections included in the traffic analysis with their control type.

4.1.1 Traffic Projections and Proposed Geometry

The traffic projections were developed for three primary concepts, the "2020 Existing," "2040 No-Build," and "2040 Build" Alternatives. The Existing Alternative models the study area intersections under current geometric conditions. The No Build Alternative models the study area intersections under current geometric conditions except for the number of travel lanes on Anita Drive. There is a proposed re-striping project on Anita Drive from Sevier Avenue to Cottrell Street that will reduce the number of through lanes to one lane in each direction with bikes lanes. Therefore, the No Build Alternative models single lane thru movements on Anita Drive.

In addition to the planned re-striping on Anita Drive, the Build Alternative includes the proposed Urban Wilderness Park project that will convert the existing northbound lanes of James White Parkway into a continuous bike and pedestrian greenway. The vehicular traffic will be shifted to where the existing southbound lanes are located making James White Parkway a two-way roadway on the current southbound lanes. Also, vehicular traffic entering and exiting the Urban Wilderness Gateway Park parking area will have access to James White Parkway just south of the Wynn Avenue overpass bridge. Existing southbound vehicular traffic entering James White Parkway at Anita Drive and at Moody Avenue no longer have access to James White Parkway and have been routed to nearby local roads to access their destination.

For the Build Alternative, all traffic control will remain the same as existing conditions; however, the James White Parkway at Sevierville Pike intersection will be realigned to accommodate traffic entering and exiting James White Parkway. The proposed posted speed limit on James White Parkway is to be set to 35 miles per hour. **Figure 12** shows a single line sketch of the Build Alternative to note where ramps and other movements are removed due to the relocation of the northbound travel lanes on James White Parkway. The figure also shows the approximate location of the new access to the Urban Wilderness Park parking area from James White Parkway. **Figure 13** shows the proposed geometry for the James White Parkway at Sevierville Pike intersection. The traffic data collection and projection methodology are described in Technical Memorandum 1: Traffic Data and Projection Summary.

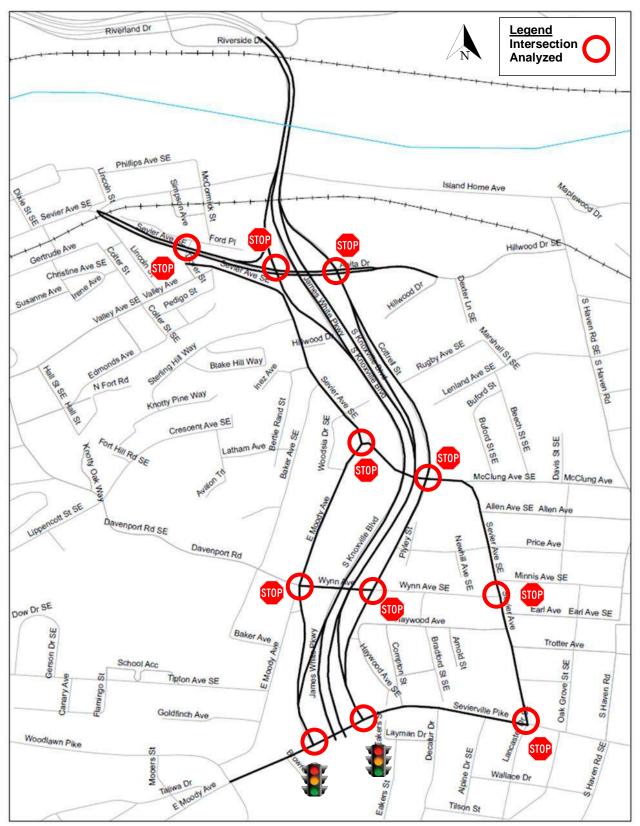


FIGURE 11: JAMES WHITE PARKWAY STUDY INTERSECTIONS

TABLE 8: INTERSECTIONS ANALYZED WITH CONTROL TYPE

Intersection	Existing Control	Proposed Control
Sevier Avenue at Anita Drive	TWSC	TWSC
Anita Drive at James White Parkway SB Ramp	TWSC	TWSC
Anita Drive at Cottrell Street	AWSC	AWSC
Sevier Avenue at E. Moody Avenue	TWSC	TWSC
Sevier Avenue at Cottrell Street	AWSC	AWSC
E. Moody Avenue at Davenport Road/Wynn Avenue	AWSC	AWSC
Cottrell Street at Wynn Avenue	TWSC	TWSC
Sevier Avenue at Wynn Avenue	TWSC	TWSC
Sevierville Pike at James White Parkway SB Ramp	Signal	Signal
Sevierville Pike at James White Parkway NB Ramp	Signal	n/a
Sevierville Pike at Sevier Avenue/Lancaster Drive	AWSC	AWSC
New Connector Road: James White Parkway and Park Connector	n/a	TWSC

^{*}TWSC = Two Way Stop Control; AWSC = All Way Stop Control

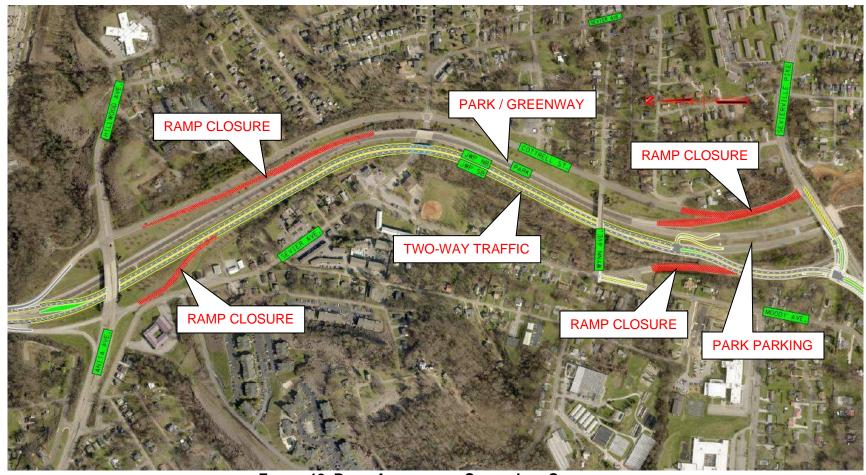


FIGURE 12: BUILD ALTERNATIVE SINGLE-LINE SKETCH

FIGURE 13: JAMES WHITE PARKWAY AT SEVIERVILLE PIKE REALIGNMENT

4.1.2 Traffic Analysis Methodology

Traffic analyses were developed for the No Build and Build conditions. The studied intersections were analyzed with the Synchro software application, Version 11. Synchro follows the methodology found in the 6th Edition of the Highway Capacity Manual (HCM). The James White Parkway roadway analysis was performed for the final build condition using the most recent version of the Highway Capacity Software (HCS), Version 7.8.5 which follows the methodology found in the 6th Edition of the Highway Capacity Manual (HCM). The traffic analysis output is provided in the Attachments.

Level-of-Service (LOS) is a qualitative traffic capacity measure that is used to gauge the operational performance of an intersection or roadway segment. There are six (6) levels ranging from 'A' to 'F' with 'F' being the worst. Each level represents a range of operating conditions. **Table 9** defines the traffic flow conditions and approximate driver comfort at each LOS for signalized and unsignalized intersections. **Table 10** outlines the LOS definitions for multilane highways.

TABLE 9: LEVEL-OF-SERVICE INDEX FOR INTERSECTIONS

LOS	TRAFFIC FLOW CONDITIONS	SIGNALIZED INTERSECTIONS DELAY (SEC/VEH)	UNSIGNALIZED INTERSECTIONS DELAY (SEC/VEH)		
А	Progression is extremely favorable, and most vehicles do not stop at all.	0-10	0-10		
В	Good progression, some delay.	10-20	10-15		
С	Fair progression, higher delay.	20-35	15-25		
D	Unfavorable progression, congestion becomes apparent.	35-55	25-35		
Е	Poor progression, significant delay.	55-80	35-50		
F	Poor progression, extreme delay.	>80	>50		

TABLE 10: LEVEL OF SERVICE INDEX (MULTILANE HIGHWAYS)

LOS	TRAFFIC FLOW CONDITIONS	MULTILANE HIGHWAY
		DENSITY (pc/mi/ln)
А	Motorists are able to travel at free-flow speeds and are almost completely unimpeded in their ability to maneuver within the traffic stream. The effects of incidents or point breakdowns are easily absorbed.	≤ 11
В	Free-flow speeds are maintained and the ability to maneuver within the traffic stream is only slightly restricted. The general level of physical and psychological comfort provided to drivers is still high. The effects of minor incidents and point breakdowns are still easily absorbed.	> 11 – 18
С	Traffic flows at speeds near the free-flow speed. Freedom to maneuver within the traffic stream is noticeably restricted, and lane changes still require more care and vigilance on the part of the driver. Minor incidents may still be absorbed, but the local deterioration in service quality will be significant.	> 18 – 26
D	Speeds begin to decline with increasing flows, with density increasing more quickly. Freedom to maneuver within the traffic stream is seriously limited and drivers experience reduced physical and psychological comfort levels. Even minor incidents can be expected to create queuing because the stream has little space to absorb disruptions.	> 26 – 35
E	Freeway is operating at capacity. Operations are highly volatile because there are virtually no usable gaps within the traffic stream, leaving little room to maneuver. Any disruption to the traffic stream, such as vehicles entering from a ramp or a vehicle changing lanes, can establish a disruption wave that propagates throughout the upstream traffic flow.	> 35 – 45
F	Breakdown, or unstable flow. Demand flow in one or both directions exceeds the capacity of the segment.	> 45 or v/c > 1.0

4.1.3 Traffic Analysis Summary

Table 11 through **Table 14** summarizes the traffic analysis. The LOS are reported for the entire intersection and for each approach with the maximum volume to capacity ratio. The years 2025 and 2045 AM and PM Peak Hours were analyzed.

Table 11 summarizes the 2020 Existing Alternative. For all study intersections, the overall LOS is B or better. A few approaches operate at a LOS C, but the delay is less than 22 seconds and is considered to have minimal delay overall. Therefore, under existing conditions, all intersections operate satisfactorily.

Table 12 summarizes the 2040 No Build Alternative. For all study intersections, the overall LOS is C or better with the exception of two study intersections. In the PM peak hour, the Sevierville Pike at James White Parkway Off Ramp intersection operates at a LOS E with the eastbound approach failing at a LOS F. This approach is a single lane with over 900 vehicles in the peak hour. In addition, the Sevierville Pike at Sevier Avenue/Lancaster Drive intersection is an all-way stop intersection that operates at a LOS C in the AM peak hour and a LOS D in the PM peak hour. The higher delay can be associated with the heavy AM WB movement and heavy PM EB movement.

Table 13 summarizes the 2040 Build Alternative, which includes the re-routed traffic volumes due to the relocation of the northbound James White Parkway travel lanes. With these proposed changes, the intersection of Sevierville Pike at James White Parkway Northbound ramps is removed and not shown in the analysis results. Proposed changes also include the realignment of Sevierville Pike at James White Parkway as shown in Figure 13 and the stop control at the intersection of Cottrell Street at Wynn Avenue is modified to allow free flowing movements on Wynn Avenue with stop control for the northbound approach of Cottrell Street. In addition, intersection 112 was added to the model to provide access to the Urban Wilderness Park. Consistent with the 2040 No Build Alternative, the LOS are typically C or better with the exception of the Sevierville Pike at Sevier Avenue/Lancaster Drive intersection. However, with the redistributed trips, the intersection of Sevierville Pike at Sevier Avenue/Lancaster Drive operates at a slightly lower delay than No Build conditions. In addition, the realignment of Sevierville Pike at James White Parkway slightly increases the overall intersection delay in the AM peak hour while significantly reducing the overall intersection delay in the PM peak hour. The failing eastbound approach in the PM 2040 No Build scenario now operates at a LOS C.

Table 14 summarizes the roadway analysis results for James White Parkway under 2040 Build Conditions. Input data for the roadway included lane width, lateral clearance, access point density, and base free flow speed (BFFS). The proposed posted speed limit is to be set to 35 miles per hour but the BFFS was set to 45 miles per hour due to it being the minimum allowable speed in the software. The results show that the four-lane divided highway will operate satisfactorily in the AM and PM build year peak hours.

TABLE 11: TRAFFIC ANALYSIS - 2020 EXISTING ALTERNATIVE

					PM									
		Overall Intersection		EB	WB	NB	SB	Overall Int	ersection	EB	WB	NB	SB	
Study Area Intersection	Intersection Control Type	LOS Delay (s)	Max v/c			OS iy (s)		LOS Delay (s)	l IMax v/cl		LOS Delay (s)			
101: Sevier Avenue & Anita Drive	TWSC	Α	0.343	Α	Α	В	С	Α	0.285	Α	Α	В	С	
101: Seviel Avenue & Anita Drive	TWSC	5.3	0.343	0.4	1.9	13.5	15.9	5.4	0.265	0.1	4.2	13.9	17.4	
102: Anita Drive & James White	TWSC	Α	0.255	Α	Α	-	В	A 0.306	Α	Α	-	В		
Parkway SB Ramp	10050	4.9	0.255	0.0	1.3	-	10.2	6.5	0.306	0.0	2.1	-	10.5	
103: Cottrell Street & Anita Drive	AWSC	В	0.354	В	В	В	-	Α	A 0.273	Α	Α	Α	-	
103: Cottrell Street & Ariita Drive	AWSC	10.8	0.354	10.6	11.0	11.0	-	9.5		9.4	9.6	9.7	-	
104: E. Moody Avenue & Sevier	TWSC	Α	0.058	-	Α	Α	Α	Α	0.047	-	Α	Α	Α	
Avenue		4.7	0.058	-	9.2	0.0	3.4	5.1	0.047	-	9.3	0.0	5.0	
105 0 11 11 01 1 1 0 0 1 1	AMCC	Α	0.000	Α	Α	Α	-	Α	0.400	Α	Α	Α	-	
105: Cottrell Street & Sevier Avenue	AWSC	7.9	0.226	7.9	7.8	8.0	-	7.5	0.122	7.7	7.3	7.8	-	
106: E. Moody Avenue & Davenport	414/00	Α	0.440	Α	Α	Α	Α	Α	0.400	Α	Α	Α	Α	
Road/Wynn Avenue	AWSC	8.0	0.143	7.5	8.4	7.8	8.0	7.8	0.196	7.8	7.6	7.8	7.7	
107 Cattacili Charat 8 W/ A	TMCC	Α	0.107	Α	Α	Α	-	Α	0.101	Α	Α	Α	-	
107: Cottrell Street & Wynn Avenue	TWSC	8.0	0.107	9.9	9.6	0.0	-	6.8	0.101	9.6	9.2	0.0	-	
108: Sevier Avenue & Wynn Avenue	TWSC	Α	0.059	Α	-	Α	Α	Α	0.05	Α	-	Α	Α	
106: Sevier Avenue & vvynin Avenue	10050	2.3	0.059	9.4	-	2.0	0.0	2.4	0.05	9.2	-	1.3	0.0	
109: Sevierville Pike & James White	Cianal	В	0.600	В	Α	-	В	В	0.750	С	Α	-	В	
Pkwy Off-Ramp	Signal	13.5	1 0.600	16.5	8.4	-	11.7	17.0	0.750	21.6	9.7	-	15.0	
110: Sevierville Pike & James White	Cianal	Α	0.480	Α	Α	-	-	Α	0.200	Α	Α	-	-	
Pkwy Ramps	Signal	2.6	0.460	2.1	3.3	-	-	1.0	0.390	0.8	1.8	-	-	
111: Lancaster Drive/Sevier Avenue	AWSC	В	0.502	Α	В	Α	Α	В	0.613	С	В	Α	Α	
& Sevierville Pike	AW 30	10.9	0.502	9.2	12.4	9.8	8.9	12.8	0.010	15.2	10.6	9.8	9.7	

TABLE 12: TRAFFIC ANALYSIS - 2040 NO BUILD ALTERNATIVE

	AM							PM						
		Overall Inte	ersection	EB	WB	NB	SB	Overall Inte	ersection	EB	WB	NB	SB	
Study Area Intersection	Intersection Control Type	LOS Delay (s)	Max v/c		L(Dela)S y (s)		LOS Delay (s)	Max v/cl		LOS Delay (s)			
101: Sevier Avenue & Anita Drive	TWSC	A 7.7	0.572	A	Α	C	C	A 7.5	0.522	A	A	C	D	
102: Anita Drive & James White	TWSC	7.7 A	0.378	Α	2.0 A	20.8 -	22.4 B	Α	0.434	0.1 A	Α	22.7	26.6 B	
Parkway SB Ramp		5.9 C		0.0 B	1.3 C	- C	12.5	8.0 B		0.0 B	2.1 B	- В	13.1	
103: Cottrell Street & Anita Drive	AWSC	15.3	0.602	13.6	15.1	17.6	-	12.3	0.515	13.3	10.8	11.8	-	
104: E. Moody Avenue & Sevier	TWSC	Α	0.082	-	Α	Α	Α	Α	0.069	-	Α	Α	Α	
Avenue		4.8	0.002	-	9.6	0.0	3.4	5.2	0.000	-	9.8	0.0	5.0	
105: Cottrell Street & Sevier Avenue	AWSC	A 8.5	0.312	A 8.2	A 8.6	A 8.4	-	7.9	0.169	8.0	7.7	A 8.0	-	
106: E. Moody Avenue & Davenport	AWSC	Α	0.202	Α	Α	Α	Α	Α	0.273	Α	Α	Α	Α	
Road/Wynn Avenue		8.5		8.0	9.0	8.4	8.5	8.3	1	8.5	7.9	8.2	8.1	
107: Cottrell Street & Wynn Avenue	TWSC	A 8.3	0.147	B 10.4	A 9.9	A 0.0	-	7.0	0.141	B	A 9.4	A 0.0	-	
108: Sevier Avenue & Wynn Avenue	TWSC	Α	0.087	Α	-	Α	Α	Α	0.072	Α	-	Α	Α	
		2.4		9.9	-	2.1	0.0	2.4		9.6	-	1.3	0.0	
109: Sevierville Pike & James White Pkwy Off-Ramp	Signal	B 18.9	0.81	C 24.1	B 15.3	-	B 14.1	E 57.3	1.14	F 104.1	B 12.0	-	C 32.1	
110: Sevierville Pike & James White	Signal	Α	0.63	Α	В	-	-	Α	0.52	Α	Α	-	-	
Pkwy Ramps	Signal	9.3	0.03	4.1	15.9	-	-	1.8	0.52	0.9	4.8	-	-	
111: Lancaster Drive/Sevier Avenue & Sevierville Pike	AWSC	C 16.5	0.741	B 11.0	C 21.5	B 11.9	B 10.4	D 27.3	0.918	E 40.2	B 14.6	B 12.0	B 11.9	

TABLE 13: TRAFFIC ANALYSIS - 2040 BUILD ALTERNATIVE

				AM						PM				
	Intersection	Overall Inte	ersection	EB	WB	NB	SB	Overall Inte	ersection	EB	WB	NB	SB	
Study Area Intersection	Control Type	LOS Delay (s)	Max v/c		L(Dela	OS iy (s)		LOS Delay (s)	Max v/cl		LOS Delay (s)			
101: Sevier Avenue & Anita Drive	TWSC	A 8.2	0.595	A 0.4	A 2.3	C 22.3	C 23.7	A 7.9	0.544	A 0.1	A 4.7	C 24.3	D 28.4	
102: Anita Drive & James White Parkway SB Ramp	TWSC	A 5.9	0.394	A	A 0.0	-	B 12.5	A 8.0	0.401	A	A 0.0	-	B 12.9	
103: Cottrell Street & Anita Drive	AWSC	C 15.3	0.602	B 13.6	C 15.1	C 17.6	-	B 12.3	0.515	B 13.3	B 10.8	B 11.8	-	
104: E. Moody Avenue & Sevier Avenue	TWSC	A 4.0	0.087	-	A 9.8	A	A 2.2	A 4.1	0.073	-	B 10.1	A	A 3.4	
105: Cottrell Street & Sevier Avenue	AWSC	A 9.0	0.333	A 8.6	A 9.2	A 9.0	-	A 8.0	0.172	A 8.1	A 7.7	A 8.2	-	
106: E. Moody Avenue & Davenport Road/Wynn Avenue	AWSC	A 8.9	0.253	A 8.2	A 9.3	A 8.6	A 9.2	A 8.7	0.285	A 8.9	A 8.1	A 8.3	A 8.7	
107: Cottrell Street & Wynn Avenue	TWSC	A 1.0	0.037	A 3.4	A 0.0	A 0.0	-	A 1.5	0.034	A 3.2	A 0.0	A 0.0	-	
108: Sevier Avenue & Wynn Avenue	TWSC	A 4.4	0.134	B	-	A 5.7	A 0.0	A 3.5	0.076	B 10.2	-	A 3.7	A 0.0	
109: Sevierville Pike & James White Pkwy	Signal	C 24.7	0.84	-	C 20.4	C 32.0	C 20.1	C 26.7	0.84		C 30.1	C 27.7	C 25.2	
111: Lancaster Drive/Sevier Avenue & Sevierville Pike	AWSC	C 15.6	0.715	B 11.0	C 19.7	B 11.8	B 10.4	D 26.8	0.918	E 39.6	B 13.9	B 11.9	B	
112: James White Pkwy/Jame White Pkwy & Proposed Park Connection	TWSC	A 0.8	0.184	B 11.3	B 12.7	A 0.0	A 0.0	A 2.4	0.525	C 22.0	B 10.7	A 0.0	A 0.1	

TABLE 14: MULTILANE ROADWAY ANALYSIS

	A	М	P	M
Travel Direction	Density (pc/mi/ln) LOS (Density (pc/mi/ln)	LOS
Northbound	14.5	В	8.9	А
Southbound	7.6	A	15	В

4.1.4 Summary

The No Build Alternative and the Build Alternative options provide adequate traffic operations through the design year of 2040. All options will adequately service the projected traffic demand.

Attachments

Raw Crash Data Statewide Crash Rate Data Signal Warrant Analysis Calculations Existing 2020 Analysis No Build Alternative 2040 Analysis Build Alternative 2040 Analysis

Wilderness Corridor Study	White Parkway Urban	James
Traffic Analysis		
City of Knoxville, TN		

RAW CRASH DATA

County: KNOX Route: 00071 Spcl Cse: 0-NONE Cnty Seq: 1

Log Miles: 0.000 to 1.100 - Crash Dates: 6/1/2017 to 5/31/2020 Vehicle Filter: None - Other Factors Filter: None

Statistics		
Statistics	Fatal Crashes:	0
	Total Killed:	0
Ir	ncap Injury Crashes:	2
	Total Incap Injuries:	2
0	ther Injury Crashes:	0
	Total Other Injuries:	0
Pro	p Damage Crashes:	5
	Total Crashes:	7

 Crash Location ———— 	
Along Roadwa	y: 7
At Intersection	n: 0
Railroad Crossing	g: 0
Bridge	e: 0
Underpas	s: 0
Ram	p: 0
Private Propert	y: 0
Othe	er: 0

- Crashes Involving —	
3	
Pedestrians:	0
Hazardous Cargo:	0
Work / Constr Zones:	0
Fixed Objects:	2
Single Unit Trucks	0
Tractor - Trailer Trucks:	0
Bicycles:	0
Motorcycles:	1
Lane Departures:	3
Distracted Drivers:	0

Road Conditions —					
	e:	0			
Snow or Slus	sh:	0			
Sand, Mud, Dirt or C	Dil:	0			
W	et:	1			
D	ry:	6			

First Harmful Event ———	
Pedestrian:	0
Pedalcycle:	0
Railway Train:	0
Deer (Animal):	1
Other Animal:	0
Motor Vehicle in Transport:	4
Motor Vehicle in Transport in Other Roadway:	0
Parked Motor Vehicle:	0
Other Type Non-Motorist:	0
Fixed Object:	2
Other Object (Not Fixed):	0
Non Collision:	0
Overturn:	0
Jackknife:	0
Cross Median:	0
Ran Off Road:	0

─ Manner of Collision ————	
Rear End:	1
Head On:	0
Rear-to-Side / Rear:	0
Angle:	0
Sideswipe Same Dir:	3
Sideswipe Opp Dir:	0
Unknown:	0

- Light Conditions ———	
Light Conditions	
Dawn:	0
Daylight:	6
Dusk:	0
Dark / Lighted:	1
Dark / Not Lighted:	0
Not Indicated:	0

-	Weather Conditions —	
	No Adverse Conditions:	7
	Rain:	0
	Sleet and Hail:	0
	Snow:	0
	Foggy:	0
	Smog, Smoke:	0
	Crosswind:	0

_	Fixed Objects ————					
	Boulder:	0	Other Barrier:	0	Ditch:	0
	Building:	0	Highway Traffic Sign Post	0	Embankment:	0
	Impact Attenuator:	0	Overhead Sign Support:	0	Fence:	0
	Overhead Structure:	0	Luminaire/Light Support:	0	Wall:	0
	Bridge Pier/Abutment/End:	0	Traffic Signal Support:	0	Mail Box:	0
	Bridge Rail:	0	Utility Pole:	0	Shrubbery:	0
	Guardrail:	0	Other Post, Pole Supports:	0	Tree:	1
	Cable Barrier:	0	Culvert:	0	Fire Hydrant:	0
	This report was generated by E-TF	RIMS	Curb:	0	Other Fixed Object:	1

County: KNOX Route: 03783 Spcl Cse: 0-NONE Cnty Seq: 1

Log Miles: 0.815 to 1.030 - Crash Dates: 6/1/2017 to 5/31/2020 Vehicle Filter: None - Other Factors Filter: None

- Statistics -	
Fatal Crashes:	0
Total Killed:	0
Incap Injury Crashes:	0
Total Incap Injuries:	0
Other Injury Crashes:	0
Total Other Injuries:	0
Prop Damage Crashes:	8
Total Crashes:	8

 Crash Location 	on	
	Along Roadway:	1
	At Intersection:	6
R	ailroad Crossing:	0
	Bridge:	0
	Underpass:	0
	Ramp:	1
	Private Property:	0
	Other:	0

- Crashes Involving —				
Graenee mrerring				
Pedestrians:	0			
Hazardous Cargo:	0			
Work / Constr Zones:	0			
Fixed Objects:	1			
Single Unit Trucks	0			
Tractor - Trailer Trucks:	0			
Bicycles:	0			
Motorcycles:	0			
Lane Departures:	1			
Distracted Drivers:	1			

Road Conditions —					
Road Conditions —	Ice:	0			
Snow o	r Slush:	0			
Sand, Mud, Dir	t or Oil:	0			
	Wet:	1			
	Dry:	7			

First Harmful Event — — — — — — — — — — — — — — — — — — —					
- First narilliui Event					
Pedestrian:	0				
Pedalcycle:	0				
Railway Train:	0				
Deer (Animal):	0				
Other Animal:	0				
Motor Vehicle in Transport:	7				
Motor Vehicle in Transport in Other Roadway:	0				
Parked Motor Vehicle:	0				
Other Type Non-Motorist:	0				
Fixed Object:	1				
Other Object (Not Fixed):	0				
Non Collision:	0				
Overturn:	0				
Jackknife:	0				
Cross Median:	0				
Ran Off Road:	0				

Manner of Collision ———	
Rear End:	0
Head On:	0
Rear-to-Side / Rear:	0
Angle:	6
Sideswipe Same Dir:	0
Sideswipe Opp Dir:	0
Unknown:	1

Light Conditions ———	
Light Conditions	
Dawn:	0
Daylight:	7
Dusk:	0
Dark / Lighted:	1
Dark / Not Lighted:	0
Not Indicated:	0

-	Weather Conditions —	
	No Adverse Conditions:	7
	Rain:	1
	Sleet and Hail:	0
	Snow:	0
	Foggy:	0
	Smog, Smoke:	0
	Crosswind:	0

_	Fixed Objects ————					
	Boulder:	0	Other Barrier:	0	Ditch:	0
	Building:	0	Highway Traffic Sign Post	0	Embankment:	0
	Impact Attenuator:	0	Overhead Sign Support:	0	Fence:	0
	Overhead Structure:	0	Luminaire/Light Support:	0	Wall:	0
	Bridge Pier/Abutment/End:	0	Traffic Signal Support:	0	Mail Box:	0
	Bridge Rail:	0	Utility Pole:	0	Shrubbery:	0
	Guardrail:	0	Other Post, Pole Supports:	0	Tree:	1
	Cable Barrier:	0	Culvert:	0	Fire Hydrant:	0
	This report was generated by E-TF	RIMS	Curb:	0	Other Fixed Object:	0

County: KNOX Route: 05665 Spcl Cse: 0-NONE Cnty Seq: 1

Crashes Involving -

Log Miles: 0.220 to 0.450 - Crash Dates: 6/1/2017 to 5/31/2020 Vehicle Filter: None - Other Factors Filter: None

- Statistics -	
Fatal Crashes:	0
Total Killed:	0
Incap Injury Crashes:	0
Total Incap Injuries:	0
Other Injury Crashes:	3
Total Other Injuries:	4
Prop Damage Crashes:	3

Total Crashes:

6

 Crash Location 	an	
	Along Roadway:	0
	At Intersection:	6
Ra	ailroad Crossing:	0
	Bridge:	0
	Underpass:	0
	Ramp:	0
I	Private Property:	0
	Other:	0

3	
Pedestrians:	0
Hazardous Cargo:	0
Work / Constr Zones:	0
Fixed Objects:	0
Single Unit Trucks	0
Tractor - Trailer Trucks:	0
Bicycles:	0
Motorcycles:	0
Lane Departures:	0
Distracted Drivers:	0

Road Conditions ———	
Ice	. 0
Snow or Slush	0
Sand, Mud, Dirt or Oil	. 0
Wet	2
Dry	4

First Harmful Event —————				
Pedestrian:	0			
Pedalcycle:	0			
Railway Train:	0			
Deer (Animal):	0			
Other Animal:	0			
Motor Vehicle in Transport:	6			
Motor Vehicle in Transport in Other Roadway:	0			
Parked Motor Vehicle:	0			
Other Type Non-Motorist:	0			
Fixed Object:	0			
Other Object (Not Fixed):	0			
Non Collision:	0			
Overturn:	0			
Jackknife:	0			
Cross Median:	0			
Ran Off Road:	0			

– Manner of Collision –––––				
Mariner of Comston				
Rear End:	1			
Head On:	0			
Rear-to-Side / Rear:	0			
Angle:	5			
Sideswipe Same Dir:	0			
Sideswipe Opp Dir:	0			
Unknown:	0			

- Light Condition	s ———	
Light Condition	3	
	Dawn:	0
	Daylight:	6
	Dusk:	0
D	ark / Lighted:	0
Dark /	Not Lighted:	0
N	Not Indicated:	0

•	Weather Conditions —	
	No Adverse Conditions:	5
	Rain:	1
	Sleet and Hail:	0
	Snow:	0
	Foggy:	0
	Smog, Smoke:	0
	Crosswind:	0

_	Fixed Objects ————					
	Boulder:	0	Other Barrier:	0	Ditch:	0
	Building:	0	Highway Traffic Sign Post	0	Embankment:	0
	Impact Attenuator:	0	Overhead Sign Support:	0	Fence:	0
	Overhead Structure:	0	Luminaire/Light Support:	0	Wall:	0
	Bridge Pier/Abutment/End:	0	Traffic Signal Support:	0	Mail Box:	0
	Bridge Rail:	0	Utility Pole:	0	Shrubbery:	0
	Guardrail:	0	Other Post, Pole Supports:	0	Tree:	0
	Cable Barrier:	0	Culvert:	0	Fire Hydrant:	0
	This report was generated by E-TI	RIMS	Curb:	0	Other Fixed Object:	0

County: KNOX Route: 03781 Spcl Cse: 0-NONE Cnty Seq: 1

Log Miles: 1.002 to 1.210 - Crash Dates: 6/1/2017 to 5/31/2020 Vehicle Filter: None - Other Factors Filter: None

 Statistics 	
Fatal Crashe	s: 0
Total Killed	d: 0
Incap Injury Crashe	s: 1
Total Incap Injuries	s: 1
Other Injury Crashes	s: 9
Total Other Injuries	s: 12
Prop Damage Crashes	s: 31
Total Crashes	s: 41

- Crash Location	
Along Roadway:	9
At Intersection:	32
Railroad Crossing:	0
Bridge:	0
Underpass:	0
Ramp:	0
Private Property:	0
Other:	0

- Crashes Involving —	
3	
Pedestrians:	0
Hazardous Cargo:	0
Work / Constr Zones:	0
Fixed Objects:	3
Single Unit Trucks	0
Tractor - Trailer Trucks:	0
Bicycles:	0
Motorcycles:	0
Lane Departures:	3
Distracted Drivers:	0

- Road Conditions ———	
lce:	0
Snow or Slush:	0
Sand, Mud, Dirt or Oil:	0
Wet:	13
Dry:	28

First Harmful Event			
Pedestrian:	0		
Pedalcycle:	0		
Railway Train:	0		
Deer (Animal):	0		
Other Animal:	0		
Motor Vehicle in Transport:	38		
Motor Vehicle in Transport in Other Roadway:	0		
Parked Motor Vehicle:	0		
Other Type Non-Motorist:	0		
Fixed Object:	3		
Other Object (Not Fixed):	0		
Non Collision:	0		
Overturn:	0		
Jackknife:	0		
Cross Median:	0		
Ran Off Road:	0		

- Manner of Collision —————			
Rear End:	27		
Head On:	1		
Rear-to-Side / Rear:	0		
Angle:	10		
Sideswipe Same Dir:	0		
Sideswipe Opp Dir:	0		
Unknown:	0		

Light Conditions —			
Light Conditions			
Dawn:	0		
Daylight:	29		
Dusk:	1		
Dark / Lighted:	9		
Dark / Not Lighted:	2		
Not Indicated:	0		

-	Weather Conditions —	
	No Adverse Conditions:	32
	Rain:	9
	Sleet and Hail:	0
	Snow:	0
	Foggy:	0
	Smog, Smoke:	0
	Crosswind:	0

					Fixed Objects —————
0	Ditch:	0	Other Barrier:	0	Boulder:
0	Embankment:	0	Highway Traffic Sign Post	0	Building:
0	Fence:	0	Overhead Sign Support:	0	Impact Attenuator:
0	Wall:	0	Luminaire/Light Support:	0	Overhead Structure:
0	Mail Box:	0	Traffic Signal Support:	0	Bridge Pier/Abutment/End:
0	Shrubbery:	1	Utility Pole:	0	Bridge Rail:
1	Tree:	1	Other Post, Pole Supports:	0	Guardrail:
0	Fire Hydrant:	0	Culvert:	0	Cable Barrier:
0	Other Fixed Object:	0	Curb:	TRIMS	This report was generated by E-

County: KNOX Route: 05664 Spcl Cse: 0-NONE Cnty Seq: 1

Log Miles: 0.000 to 0.115 - Crash Dates: 6/1/2017 to 5/31/2020 Vehicle Filter: None - Other Factors Filter: None

- Statistics -	
Fatal Crashes:	0
Total Killed:	0
Incap Injury Crashes:	0
Total Incap Injuries:	0
Other Injury Crashes:	0
Total Other Injuries:	0
Prop Damage Crashes:	10
Total Crashes:	10

- Crash Location ————	
Along Roadway:	1
At Intersection:	9
Railroad Crossing:	0
Bridge:	0
Underpass:	0
Ramp:	0
Private Property:	0
Other:	0

- Crashes Involving ————	
3	
Pedestrians:	0
Hazardous Cargo:	0
Work / Constr Zones:	0
Fixed Objects:	1
Single Unit Trucks	0
Tractor - Trailer Trucks:	0
Bicycles:	0
Motorcycles:	0
Lane Departures:	1
Distracted Drivers:	0

- Road Conditions ———	
Ice	: 0
Snow or Slush	: 0
Sand, Mud, Dirt or Oil	: 0
Wet	: 0
Dry	: 10

First Harmful Event ————————————————————————————————————				
Pedestrian:	0			
Pedalcycle:	0			
Railway Train:	0			
Deer (Animal):	0			
Other Animal:	0			
Motor Vehicle in Transport:	9			
Motor Vehicle in Transport in Other Roadway:	0			
Parked Motor Vehicle:	0			
Other Type Non-Motorist:	0			
Fixed Object:	1			
Other Object (Not Fixed):	0			
Non Collision:	0			
Overturn:	0			
Jackknife:	0			
Cross Median:	0			
Ran Off Road:	0			

– Manner of Collision – – – – – – – – – – – – – – – – – – –				
- Mailler of Collision				
Rear End:	5			
Head On:	0			
Rear-to-Side / Rear:	0			
Angle:	4			
Sideswipe Same Dir:	0			
Sideswipe Opp Dir:	0			
Unknown:	0			

Light Conditions ———	
Light Conditions —	
Dawn:	0
Daylight:	5
Dusk:	2
Dark / Lighted:	2
Dark / Not Lighted:	1
Not Indicated:	0

-	Weather Conditions —	
	No Adverse Conditions:	10
	Rain:	0
	Sleet and Hail:	0
	Snow:	0
	Foggy:	0
	Smog, Smoke:	0
	Crosswind:	0

_	Fixed Objects ————									
	Boulder:	0	Other Barrier:	0	Ditch:	0				
	Building:	0	Highway Traffic Sign Post	0	Embankment:	0				
	Impact Attenuator:	0	Overhead Sign Support:	0	Fence:	0				
	Overhead Structure:	0	Luminaire/Light Support:	0	Wall:	0				
	Bridge Pier/Abutment/End:	0	Traffic Signal Support:	0	Mail Box:	0				
	Bridge Rail:	0	Utility Pole:	0	Shrubbery:	0				
	Guardrail:	1	Other Post, Pole Supports:	0	Tree:	0				
	Cable Barrier:	0	Culvert:	0	Fire Hydrant:	0				
	This report was generated by E-TI	RIMS	Curb:	0	Other Fixed Object:	0				

	Relation to First			Case	Year Of	Date of	Time of		Total	Total	Incap	Other			Weather	
BLM	Junction	County	Route	Number	Crash	Crash	Crash	Type of Crash	Killed	lnj	Injuries	Injuries	Total Veh	Manner of First Collision	Cond	Light Conditions
0.004	NON JUNCTION	KNOX	00071	300439027	2018	4/20/2018	1355	Prop Damage (under)	0	0	0	0	2	REAR-END	Clear	Daylight
	NON JUNCTION	KNOX	00071	300403722	2017	11/26/2017	1824	Prop Damage (over)	0	0	0	0	1	NO COLLISION W/ VEHICLE	Clear	Dark-Lighted
	NON JUNCTION	KNOX	00071	300506615	2019	1/8/2019	1705	Prop Damage (over)	0	0	0	0	2	SIDESWIPE, SAME DIR	Clear	Daylight
0.709	NON_JUNCTION	KNOX	00071	300607047	2020	2/7/2020	757	Prop Damage (over)	0	0	0	0	2	SIDESWIPE, SAME DIR	Clear	Daylight
1.062	NON_JUNCTION	KNOX	00071	300426656	2018	3/2/2018	925	Prop Damage (over)	0	0	0	0	2	SIDESWIPE, SAME DIR	Clear	Daylight
0.434	NON_JUNCTION	KNOX	00071	300625430	2020	5/15/2020	1457	Suspected Serious Injury	0	1	1	0	1	NO COLLISION W/ VEHICLE	Clear	Daylight
1.028	NON_JUNCTION	KNOX	00071	300378242	2017	8/19/2017	1443	Suspected Serious Injury	0	1	1	0	1	NO COLLISION W/ VEHICLE	Clear	Daylight
0.815	INTERSECTION	KNOX	03783	300405038	2017	11/29/2017	830	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Daylight
0.815	INTERSECTION	KNOX	03783	300413770	2018	1/5/2018	2119	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Dark-Lighted
0.963	INTERSECTION	KNOX	03783	300454410	2018	6/17/2018	1303	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Daylight
1.03	INTERSECTION	KNOX	03783	300580767	2019	10/30/2019	1738	Prop Damage (over)	0	0	0	0	2	OTHER	Rain	Daylight
1.03	INTERSECTION	KNOX	03783	300611493	2020	2/27/2020	1547	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Daylight
	INTERSECTION F	KNOX	03783	300389072	2017	9/29/2017	1636	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Daylight
	ENTRENCE/EXIT	KNOX	03783	300503372	2018	12/22/2018	1406	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Daylight
	OTHER	KNOX	03783	300366929	2017	6/30/2017	1504	Prop Damage (under)	0	0	0	0	1	NO COLLISION W/ VEHICLE	Clear	Daylight
	INTERSECTION	KNOX	05665	300382316	2017	9/2/2017	1750	Suspected Minor Injury	0	1	0	1	2	ANGLE	Clear	Daylight
	INTERSECTION	KNOX	05665	300404165	2017	11/27/2017	1649	Suspected Minor Injury	0	2	0	2	2	ANGLE	Clear	Daylight
	INTERSECTION	KNOX	05665	300498174	2018	12/6/2018	854	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Daylight
	INTERSECTION	KNOX	05665	300540802	2019	5/23/2019	751	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
	INTERSECTION	KNOX	05665	300552795	2019	7/13/2019	1038	Suspected Minor Injury	0	1	0	1	2	ANGLE	Clear	Daylight
	INTERSECTION	KNOX	05665	300553702	2019	7/17/2019	818	Prop Damage (over)	0	0	0	0	2	ANGLE	Rain	Daylight
	NON_JUNCTION	KNOX	03781	300489730	2018	11/5/2018	803	Suspected Minor Injury	0	2	0	2	2	REAR-END	Cloudy	Daylight
	NON_JUNCTION	KNOX	03781	300599586	2020	1/9/2020	1700	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Dusk
	NON_JUNCTION	KNOX	03781	300415417	2018	1/12/2018	1650	Suspected Minor Injury	0	1	0	1	2	REAR-END	Rain	Daylight
	NON_JUNCTION	KNOX	03781	300475373	2018	9/14/2018	1849	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
-	NON_JUNCTION	KNOX	03781	300471071	2018	8/27/2018	2115	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Dark-Lighted
	NON_JUNCTION	KNOX	03781	300489732	2018	11/5/2018	743	Prop Damage (over)	0	0	0	0	3	REAR-END	Rain	Daylight
	NON_JUNCTION	KNOX	03781	300522866	2019	3/15/2019	2042	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Dark-Lighted
	NON_JUNCTION	KNOX	03781	300407776	2017	12/12/2017	337	Suspected Minor Injury	0	1	0	1	3	REAR-END	Clear	Dark-Lighted
	NON_JUNCTION INTERSECTION	KNOX KNOX	03781 03781	300422462 300366200	2018 2017	2/14/2018 6/28/2017	125 1141	Suspected Serious Injury Prop Damage (over)	0	0	0	0	1 2	NO COLLISION W/ VEHICLE REAR-END	Clear Clear	Dark-Lighted
		KNOX							0	0	0	0	2	ANGLE		Daylight
	INTERSECTION INTERSECTION	KNOX	03781 03781	300372445 300372961	2017 2017	7/26/2017 7/27/2017	847 1140	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear Clear	Daylight
	INTERSECTION	KNOX	03781	300372961	2017	11/20/2017	1815	Prop Damage (over) Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight Daylight
	INTERSECTION	KNOX	03781	300402421	2017	3/7/2018	825	Prop Damage (over)	0	0	0	0	2	REAR-END	Cloudy	Daylight
	INTERSECTION	KNOX	03781	300427710	2018	12/10/2018	1208	Suspected Minor Injury	0	1	0	1	2	REAR-END	Clear	Daylight
	INTERSECTION	KNOX	03781	300499330	2019	6/5/2019	1648	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
	INTERSECTION	KNOX	03781	300558797	2019	8/7/2019	1531	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
	INTERSECTION	KNOX	03781	300562408	2019	8/22/2019	813	Prop Damage (over)	0	0	0	0	2	ANGLE	Rain	Daylight
	INTERSECTION	KNOX	03781	300587229	2019	11/22/2019	1851	Prop Damage (over)	0	0	0	0	2	ANGLE	Rain	Dark-Not Lighted
	INTERSECTION	KNOX	03781	300609092	2020	2/17/2020	2035	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Dark-Not Lighted
	INTERSECTION	KNOX	03781	300614864	2020	3/7/2020	1450	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
	INTERSECTION	KNOX	03781	300573218	2019	10/3/2019	1553	Prop Damage (over)	0	0	0	0	3	REAR-END	Clear	Daylight
	INTERSECTION	KNOX	03781	300366285	2017	6/28/2017	1654	Prop Damage (under)	0	0	0	0	2	REAR-END	Clear	Daylight
	INTERSECTION	KNOX	03781	300428456	2017	3/10/2018	941	Prop Damage (over)	0	0	0	0	2	HEAD-ON	Cloudy	Daylight
	INTERSECTION	KNOX	03781	300455572	2018	6/25/2018	1420	Prop Damage (over)	0	0	0	0	2	REAR-END	Rain	Daylight
	INTERSECTION	KNOX	03781	300476538	2018	9/18/2018	1354	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Daylight
	INTERSECTION	KNOX	03781	300542232	2019	5/29/2019	1750	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
	INTERSECTION	KNOX	03781	300576367	2019	10/16/2019	1000	Suspected Minor Injury	0	1	0	1	2	REAR-END	Rain	Daylight
	INTERSECTION	KNOX	03781	300623285	2020	5/6/2020	1239	Prop Damage (over)	0	0	0	0	2	REAR-END	Cloudy	Daylight
	INTERSECTION	KNOX	03781	300391623	2017	10/9/2017	1545	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Daylight
	INTERSECTION	KNOX	03781	300409281	2017	12/17/2017	1804	Prop Damage (over)	0	0	0	0	3	REAR-END	Rain	Dark-Lighted
		KNOX	03781	300456966	2018	7/1/2018	1446	Prop Damage (over)	0	0	0	0	1	NO COLLISION W/ VEHICLE	Clear	Daylight
1.002	INTERSECTION	NINOA	บง/ถา	300 4 00900	2010	1/1/2010		FIUD Dalliaue (UVel)						INO COLLISION W/ VLI IIV.	Cicai	Davilulit

	Relation to First		_	Case	Year Of	Date of	Time of		Total	Total	Incap	Other			Weather	
BLM	Junction	County	Route	Number	Crash	Crash	Crash	Type of Crash	Killed	lnj	Injuries	Injuries	Total Veh	Manner of First Collision	Cond	Light Conditions
1.002	INTERSECTION F	KNOX	03781	300499819	2018	12/11/2018	1643	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
1.002	INTERSECTION F	KNOX	03781	300504611	2018	12/28/2018	1454	Suspected Minor Injury	0	1	0	1	2	ANGLE	Rain	Daylight
1.002	INTERSECTION F	KNOX	03781	300505952	2019	1/5/2019	1844	Suspected Minor Injury	0	1	0	1	4	REAR-END	Clear	Dark-Lighted
1.002	INTERSECTION F	KNOX	03781	300554553	2019	7/21/2019	1420	Suspected Minor Injury	0	2	0	2	2	ANGLE	Clear	Daylight
1.153	INTERSECTION F	KNOX	03781	300471520	2018	8/29/2018	1600	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
1.153	INTERSECTION F	KNOX	03781	300599574	2020	1/9/2020	1812	Prop Damage (over)	0	0	0	0	3	ANGLE	Clear	Dark-Not Lighted
1.21	INTERSECTION F	KNOX	03781	300587228	2019	11/7/2019	1750	Prop Damage (over)	0	0	0	0	2	REAR-END	Rain	Dark-Lighted
1.103	OTHER	KNOX	03781	300554173	2019	7/20/2019	210	Suspected Minor Injury	0	1	0	1	1	NO COLLISION W/ VEHICLE	Clear	Dark-Lighted
0.048	INTERSECTION	KNOX	05664	300376350	2017	8/9/2017	1715	Prop Damage (under)	0	0	0	0	2	REAR-END	Clear	Daylight
0.048	INTERSECTION	KNOX	05664	300398678	2017	11/5/2017	1747	Prop Damage (under)	0	0	0	0	2	ANGLE	Clear	Dusk
0.048	INTERSECTION	KNOX	05664	300400575	2017	11/13/2017	2232	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Dark-Not Lighted
0.048	INTERSECTION	KNOX	05664	300510913	2019	1/25/2019	1309	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
0.048	INTERSECTION	KNOX	05664	300518377	2019	2/26/2019	1315	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
0.048	INTERSECTION	KNOX	05664	300525066	2019	3/26/2019	934	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Daylight
0.048	INTERSECTION	KNOX	05664	300525137	2019	3/26/2019	1628	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Daylight
0.115	INTERSECTION	KNOX	05664	300498158	2018	12/6/2018	1722	Prop Damage (over)	0	0	0	0	2	REAR-END	Clear	Dusk
0.048	INTERSECTION	KNOX	05664	300558767	2019	8/8/2019	330	Prop Damage (over)	0	0	0	0	1	NO COLLISION W/ VEHICLE	Clear	Dark-Lighted
0.043	CROSSOVER RE	KNOX	05664	300480775	2018	10/4/2018	1951	Prop Damage (over)	0	0	0	0	2	ANGLE	Clear	Dark-Lighted

Wilderness Corridor Study	James White Parkway Urban
Traffic Analysis	•
City of Knoxville, TN	

STATEWIDE CRASH RATE DATA

Tennessee Department of Transportation Statewide Intersection Crash Rates

Study: OFFICIAL HSIP STUDY 2014 - 2016

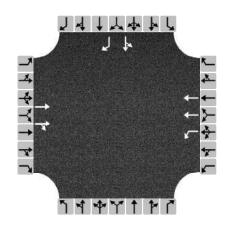
Begin Date: 1/1/2014

End Date: 12/31/2016

		-		Rural					Urban		
					Multi-Lan	е				Multi-Lane)
		2 Lane	2 Ln w/Turn	Univided	Divided	Turn Lane	2 Lane	2 Ln w/Turn	Univided	Divided	Turn Lane
Sign	alized Interse	ections									
	Non-injury	0.456	0.525	0.699	0.401	0.392	0.595	0.452	0.633	0.545	0.507
	Injury	0.109	0.109	0.134	0.141	0.129	0.167	0.130	0.180	0.157	0.160
	Incap Inj	0.020	0.027	0.017	0.032	0.027	0.012	0.010	0.016	0.018	0.013
	Fatal	0.001	0.000	0.000	0.004	0.000	0.001	0.000	0.001	0.001	0.001
	Total	0.586	0.661	0.850	0.577	0.549	0.774	0.592	0.830	0.721	0.682
Full	Stop Intersec	tions									
	Non-injury	0.425	0.898	0.564	0.443	0.900	0.379	0.653	0.110	0.550	0.000
	Injury	0.088	0.225	0.564	0.194	0.053	0.100	0.087	0.110	0.167	0.000
	Incap Inj	0.006	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.015	0.000
	Fatal	0.000	0.000	0.000	0.000	0.000	0.002	0.044	0.000	0.000	0.000
	Total	0.519	1.122	1.128	0.637	0.953	0.490	0.783	0.219	0.731	0.000
Othe	er Intersection	าร									
	Non-injury	0.079	0.073	0.075	0.048	0.042	0.127	0.117	0.165	0.120	0.105
	Injury	0.033	0.020	0.026	0.025	0.016	0.040	0.033	0.049	0.039	0.033
	Incap Inj	0.008	0.007	0.003	0.008	0.003	0.005	0.004	0.005	0.006	0.004
	Fatal	0.001	0.000	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001
	Total	0.121	0.099	0.104	0.083	0.062	0.173	0.154	0.220	0.166	0.143

11/3/2017 7:58 AM Page 2 of 3

Tennessee Department of Transportation Statewide Average Crash Rates for Sections and Spots


Study: OFFICIAL HSIP STUDY 2014 - 2016
Begin Date: 1/1/2014 End Date: 12/31/2016

Route Type	Rural / Urban	Location Type	n Highway Type	Fatal Rate	Incap. Rate	Other Inj. Rate	Pd. Rate	Total Rate	Severe Crash Rate	Total Veh. Miles (in millions)
Functionally C	lassified	Local Ro	oads							
FUNCT.	Rural	Section	2 OR 3 LN	0.034	0.179	0.676	1.943	2.832	0.213	7,033
FUNCT.	Rural	Section	2 OR 3 LN W/TL	0.024	0.096	0.358	1.194	1.671	0.119	42
FUNCT.	Rural	Section	4 OR MORE UNDIV	0.000	0.000	1.814	4.405	6.219	0.000	4
FUNCT.	Rural	Section	4 OR MORE DIV	0.000	0.000	0.000	0.000	0.000	0.000	0
FUNCT.	Rural	Section	4 OR MORE W TL	0.000	0.000	0.000	0.000	0.000	0.000	0
FUNCT.	Rural	Section	FREEWAY	0.000	1.323	2.646	6.615	10.583	1.323	1
FUNCT.	Rural	Spot	2 OR 3 LN	0.016	0.083	0.313	0.901	1.312	0.098	15,243
FUNCT.	Rural	Spot	2 OR 3 LN W/TL	0.000	0.022	0.076	0.305	0.403	0.022	183
FUNCT.	Rural	Spot	4 OR MORE UNDIV	0.000	0.041	0.326	0.856	1.223	0.041	25
FUNCT.	Rural	Spot	FREEWAY	0.000	0.151	0.302	0.905	1.357	0.151	7
FUNCT.	Urban	Section	2 OR 3 LN	0.011	0.098	0.734	2.776	3.618	0.109	15,443
FUNCT.	Urban	Section	2 OR 3 LN W/TL	0.004	0.068	0.692	3.053	3.817	0.072	1,639
FUNCT.	Urban	Section	4 OR MORE UNDIV	0.011	0.076	0.924	3.518	4.529	0.087	2,736
FUNCT.	Urban	Section	4 OR MORE DIV	0.007	0.044	0.552	2.445	3.047	0.050	3,750
FUNCT.	Urban	Section	4 OR MORE W TL	0.016	0.064	0.737	2.713	3.530	0.079	4,650
FUNCT.	Urban	Section	FREEWAY	0.004	0.025	0.470	1.958	2.457	0.030	475
FUNCT.	Urban	Spot	2 OR 3 LN	0.002	0.017	0.128	0.497	0.643	0.018	94,012
FUNCT.	Urban	Spot	2 OR 3 LN W/TL	0.001	0.009	0.094	0.428	0.532	0.010	12,328
FUNCT.	Urban	Spot	4 OR MORE UNDIV	0.001	0.009	0.110	0.456	0.576	0.010	27,060
FUNCT.	Urban	Spot	4 OR MORE DIV	0.001	0.006	0.074	0.330	0.410	0.006	32,186
FUNCT.	Urban	Spot	4 OR MORE W TL	0.002	0.008	0.091	0.342	0.443	0.010	39,317
FUNCT.	Urban	Spot	FREEWAY	0.001	0.003	0.064	0.277	0.344	0.004	4,234

	City of Knoxville, TN
SIGNAL WARRANT ANALYSIS CALCULATIONS	

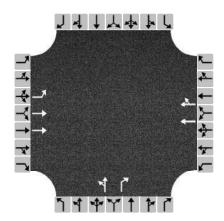
	HCS7 Warr	ants Report	
Project Information			
Analyst	RLM	Date	09/04/2020
Agency	Gresham Smith	Analysis Year	2020
Jurisdiction	City of Knoxville	Time Period Analyzed	
Project Description	Anita Drive at James White Parkwa	y SB Ramps	
General			
Major Street Direction	East-West	Population < 10,000	No
Starting Time Interval	7	Coordinated Signal System	No
Median Type	Divided	Crashes (crashes/year)	1
Major Street Speed (mi/h)	35	Adequate Trials of Crash Exp. Alt.	No
Nearest Signal (ft)	3000		

Geometry and Traffic

Approach	ı	Eastbound	t	Westbound			N	lorthboun	ıd	Southbound		
Movement	L	T	R	L	T	R	L	Т	R	L	Т	R
Number of Lanes, N	0	2	0	1	2	0	0	0	0	0	1	1
Lane Usage		TR		L	T						LT	R
Vehicle Volumes Averages (veh/h)	0	130	21	15	35	0	0	0	0	101	0	0
Pedestrian Averages (peds/h)	0			0			0			0		
Gap Averages (gaps/h)	0			0				0		0		
Delay (s/veh)	0.0			0.0			0.0			0.0		
Delay (veh-hrs)	0.0			0.0			0.0			0.0		

School Crossing and Roadway Network

Number of Students in Highest Hour	0	Two or More Major Routes	No
Number of Adequate Gaps in Period	0	Weekend Counts	No
Number of Minutes in Period	0	5-year Growth Factor (%)	0


Railroad Crossing

Grade Crossing Approach	None	Rail Traffic (trains/day)	0
Highest Volume Hour with Trains	Unknown	High Occupancy Buses (%)	0
Distance to Stop Line (ft)		Tractor-Trailer Trucks (%)	0

					HCS	7 Wai	rants	Repor	't					
Volume S	ummarv	,						_						
	_	Minor	Total	Doda/b	Gaps/h	1A	1A	1B	1B	2	3A	3B	4A	4B
Hour	Major Volume	Volume	Volume	Peds/h		(100%)	(80%)	(100%)	(80%)	(100%)	(100%)	(100%)	(100%)	(100%)
07 - 08	205	71	276	0	0	No	No	No	No	No	No	No	No	No
08 - 09	153	80	233	0	0	No	No	No	No	No	No	No	No	No
09 - 10	166	79	245	0	0	No	No	No	No	No	No	No	No	No
10 - 11 179 78 257 0 0 No No <t< td=""><td>No</td><td>No</td></t<>													No	No
11 - 12 192 77 269 0 0 No No <t< td=""><td>No</td><td>No</td></t<>													No	No
													No	No
13 - 14													No	No
14 - 15 219 107 326 0 0 No No No No No No No No													No	No
15 - 16 238 119 357 0 0 No No No No No No No													No	No
16 - 17 256 131 387 0 0 No No No No No No													No	No
17 - 18 223 153 376 0 0 No No No No No No No													No	No
18 - 19 223 153 376 0 0 No No No No No No No													No	No
Total	2436	1225	3661	0	0	0	0	0	0	0	0	0	0	0
Warrants														
Warrant 1:	Eight-Hoເ	ır Vehicu	lar Volui	ne										
A. Minimu	ım Vehicula	r Volumes	(Both ma	jor approa	chesand	d higher	minor app	oroach)c	or					
B. Interrup	tion of Co	ntinuous T	raffic (Botl	n major ap	proaches	and hi	gher mino	r approach	n)or					
80% Vehic	cularand-	Interrup	tion Volun	nes (Both i	najor app	roaches	and high	ner minor a	approach)					
Warrant 2:	Four-Hou	r Vehicul	ar Volun	1e										
Four-Hou	r Vehicular	Volume (B	oth major	approach	esand	higher mi	nor appro	ach)						
Warrant 3:	Peak Hou	r												
A. Peak-H	our Condit	ions (Minc	or delay	and min	or volume	and to	otal volum	e)or						
B. Peak-H	our Vehicul	ar Volume	s (Both ma	ajor appro	achesar	nd highe	r minor ap	proach)						
Warrant 4:				<u> </u>										
	our Volume													
B. One-Ho	our Volume	S												
Warrant 5:	School Cr	ossing												
	e Period													
Student V														
Nearest Ti	affic Contr	ol Signal (optional)										√	
Warrant 6:			•											
	Platooning				th direction	ons)								
Warrant 7:														
	ite trials of		es, observa	ance and e	nforceme	nt failed	and							
·	ed crashes s													
·	lumes for \													
Warrant 8:														
				ıd projec	ted warra	nts 1, 2, or	3)or							
A. Weekday Volume (Peak hour totaland projected warrants 1, 2, or 3)or B. Weekend Volume (Five hours total)														
Warrant 9: Grade Crossing														
	Crossing wi		:and											
	our Vehicul													
Convright © 20				December		ICSTM Sign	-1.\4/	\/	\ F			6	11/6/2020	2 42 5 4 54

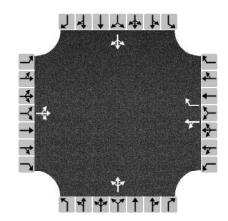
	HCS7 Warr	ants Report										
Project Information												
Analyst	RLM	Date	09/04/2020									
Agency	Gresham Smith	Analysis Year	2020									
Jurisdiction	City of Knoxville	Time Period Analyzed										
Project Description	Anita Drive at Cottrell Street											
General												
Major Street Direction	East-West	Population < 10,000	No									
Starting Time Interval	7	Coordinated Signal System	No									
Median Type	Divided	Crashes (crashes/year)	2									
Major Street Speed (mi/h)	35	Adequate Trials of Crash Exp. Alt.	No									
Nearest Signal (ft)	3500											

Geometry and Traffic

Approach		Eastbound	ł	\	Westbound			Iorthboun	ıd	Southbound		
Movement	L	T	R	L	Т	R	L	T	R	L	Т	R
Number of Lanes, N	1	2	0	0	2	0	0	1	1	0	0	0
Lane Usage	L	T			TR			LT	R			
Vehicle Volumes Averages (veh/h)	130	141	0	0	30	131	21	92	17	0	0	0
Pedestrian Averages (peds/h)	0			0				0		0		
Gap Averages (gaps/h)	0			0				0		0		
Delay (s/veh)	0.0			0.0				0.0		0.0		
Delay (veh-hrs)	0.0			0.0			0.0			0.0		
Cabaal Crassing and Dandway	Madana	l										

School Crossing and Roadway Network

Number of Students in Highest Hour	0	Two or More Major Routes	No
Number of Adequate Gaps in Period	0	Weekend Counts	No
Number of Minutes in Period	0	5-year Growth Factor (%)	0


Railroad Crossing

Grade Crossing Approach	None	Rail Traffic (trains/day)	0
Highest Volume Hour with Trains	Unknown	High Occupancy Buses (%)	0
Distance to Stop Line (ft)		Tractor-Trailer Trucks (%)	0
Copyright © 2020 University of Florida. All Rigi	Warrants Version 7.8.5	Generated: 10/8/2020 10:37:08 AM	

HCS7 Warrants Report														
Volume Summary														
	_	Minor	Total	Doda/b	Gaps/h	1A	1A	1B	1B	2	3A	3B	4A	4B
Hour	Major Volume	Volume	Volume	Peds/h		(100%)	(80%)	(100%)	(80%)	(100%)	(100%)	(100%)	(100%)	(100%)
07 - 08	496	235	731	0	0	No	Yes	No	No	No	No	No	No	No
08 - 09	503	144	647	0	0	No	No	No	No	No	No	No	No	No
09 - 10	291	123	414	0	0	No	No	No	No	No	No	No	No	No
10 - 11	262	104	366	0	0	No	No	No	No	No	No	No	No	No
11 - 12	342	83	425	0	0	No	No	No	No	No	No	No	No	No
12 - 13													No	No
13 - 14												No	No	No
14 - 15												No	No	No
15 - 16	15 - 16 502 121 623 0 0 No No No No No No No												No	No
16 - 17	557	123	680	0	0	No	No	No	No	No	No	No	No	No
17 - 18	534	148	682	0	0	No	No	No	No	No	No	No	No	No
18 - 19	534	148	682	0	0	No	No	No	No	No	No	No	No	No
Total													0	0
Warrants														
Warrant 1: Eight-Hour Vehicular Volume														
A. Minimu	ım Vehicula	r Volumes	(Both ma	jor approa	chesand	d higher	minor app	oroach)c	r					
A. Minimum Vehicular Volumes (Both major approachesand higher minor approach)or B. Interruption of Continuous Traffic (Both major approachesand higher minor approach)or														
80% Vehic	ularand-	Interrup	tion Volun	nes (Both i	major app	roaches	and high	er minor a	pproach)					
Warrant 2:	Four-Hou	r Vehicul	ar Volun	1e										
Four-Hou	r Vehicular	Volume (B	oth major	approach	esand	higher mi	nor appro	ach)						
Warrant 3:	Peak Hou	r												
A. Peak-H	our Conditi	ions (Minc	r delay	and min	or volume	and to	otal volum	e)or						
B. Peak-H	our Vehicul	ar Volume	s (Both m	ajor appro	achesar	nd highe	r minor ap	proach)						
Warrant 4:	Pedestria	n Volum	2											
A. Four Ho	our Volume	sor												
B. One-Ho	our Volume	S												
Warrant 5:	School Cr	ossing												
Gaps Sam	e Period	and												
Student V														
Nearest Tr	affic Contr	ol Signal (optional)										✓	
Warrant 6:	Coordina	ted Signa	ıl System											
Degree of	Platooning	g (Predom	inant dired	tion or bo	th directio	ons)								
Warrant 7:	Crash Exp	erience												
A. Adequa	te trials of	alternative	es, observa	ance and e	nforceme	nt failed	and							
B. Reporte	d crashes	susceptible	e to correc	tion by sig	ınal (12-m	onth perio	d)and-							
B. Reported crashes susceptible to correction by signal (12-month period)and C. 80% Volumes for Warrants 1A, 1B,or 4 are satisfied														
Warrant 8: Roadway Network														
A. Weekday Volume (Peak hour totaland projected warrants 1, 2, or 3)or														
B. Weeker	nd Volume	(Five hour	s total)											
Warrant 9:														
	Crossing wi		:and											
	our Vehicul													
Convright © 20				n 1		ICSTM Sign	1144	70	\ F			enerated: 1	10/0/2020 1	0.07.00.44

HCS7 Warrants Report											
Project Information											
Analyst	RLM	Date	09/04/2020								
Agency	Gresham Smith	Analysis Year	2020								
Jurisdiction	City of Knoxville	Time Period Analyzed									
Project Description Sevierville Pike at Sevier Avenue/Lancaster Drive											
General											
Major Street Direction	East-West	Population < 10,000	No								
Starting Time Interval	7	Coordinated Signal System	No								
Median Type Undivided Crashes (crashes/year) 1											
Major Street Speed (mi/h)	30	Adequate Trials of Crash Exp. Alt.	No								
Nearest Signal (ft)	1400										

Geometry and Traffic

Approach	1	Eastbound	ł	١	Vestboun.	d	N	Iorthboun	ıd	Southbound			
Movement	L	L T R 0 1 0 LTR		L	Т	R	L	T	R	L	Т	R	
Number of Lanes, N	0			0	1	1	0	1	0	0	1	0	
Lane Usage					LT	R		LTR			LTR		
Vehicle Volumes Averages (veh/h)	27	158	42	28	135	11	43	19	25	17	17	29	
Pedestrian Averages (peds/h)		0		0				0		0			
Gap Averages (gaps/h)		0			0			0		0			
Delay (s/veh)		0.0			0.0			0.0		0.0			
Delay (veh-hrs)		0.0			0.0			0.0		0.0			
Calcul Constitution of Development National													

School Crossing and Roadway Network

Number of Students in Highest Hour	0	Two or More Major Routes	No
Number of Adequate Gaps in Period	0	Weekend Counts	No
Number of Minutes in Period	0	5-year Growth Factor (%)	0

Railroad Crossing

Grade Crossing Approach	None Rail Traffic (trains/day)		0
Highest Volume Hour with Trains	Unknown	High Occupancy Buses (%)	0
Distance to Stop Line (ft)		Tractor-Trailer Trucks (%)	0

HCS7 Warrants Report														
Volume Si	ummary										ı			
Hour	Major Volume	Minor Volume	Total Volume	Peds/h	Gaps/h	1A (100%)	1A (80%)	1B (100%)	1B (80%)	2 (100%)	3A (100%)	3B (100%)	4A (100%)	4B (100%)
07 - 08	429	112	610	0	0	No	No	No	No	No	No	No	No	No
08 - 09	319	86	445	0	0	No	No	No	No	No	No	No	No	No
09 - 10	309	79	431	0	0	No	No	No	No	No	No	No	No	No
10 - 11	297	70	413	0	0	No	No	No	No	No	No	No	No	No
11 - 12	287	63	399	0	0	No	No	No	No	No	No	No	No	No
12 - 13	356	86	502	0	0	No	No	No	No	No	No	No	No	No
13 - 14													No	No
14 - 15													No	No
15 - 16												No	No	
16 - 17												No	No	No
17 - 18	599	93	783	0	0	No	No	No	No	No	No	No	No	No
18 - 19												No	No	No
Total	4850	1078	6696	0	0	0	0	0	0	0	0	0	0	0
Warrants														
Warrant 1: Eight-Hour Vehicular Volume														
A. Minimu	m Vehicula	ar Volumes	(Both ma	jor approa	chesand	d higher	minor app	oroach)c	or					
B. Interrup	tion of Co	ntinuous T	raffic (Botl	n major ap	proaches	and hi	gher mino	r approach	n)or					
80% Vehic	ularand-	Interrup	tion Volun	nes (Both r	najor app	roaches	and high	er minor a	approach)					
Warrant 2:	Four-Hou	r Vehicul	ar Volun	1e										
Four-Hou	r Vehicular	Volume (B	oth major	approach	esand	higher mi	nor appro	ach)						
Warrant 3:	Peak Hou	r												
A. Peak-H	our Condit	ions (Mino	or delay	and min	or volume	and to	otal volum	e)or						
B. Peak-Ho	our Vehicul	ar Volume	s (Both ma	ajor appro	achesar	nd highe	r minor ap	proach)						
Warrant 4:	Pedestria	n Volume	2											
A. Four Ho	our Volume	sor												
B. One-Ho	ur Volume	S												
Warrant 5:	School Cr	ossing												
Gaps Sam	e Period	and												
Student V	olumes													
Nearest Tr	affic Contr	ol Signal (optional)										✓	
Warrant 6:	Coordinat	ted Signa	l System											
Degree of	Platooning	g (Predom	inant dired	tion or bo	th directio	ns)								
Warrant 7:	Crash Exp	erience												
A. Adequa	te trials of	alternative	es, observa	nce and e	nforceme	nt failed	and							
B. Reporte	d crashes	susceptible	e to correc	tion by sig	ınal (12-m	onth perio	d)and							
C. 80% Volumes for Warrants 1A, 1B,or 4 are satisfied														
Warrant 8: Roadway Network														
A. Weekday Volume (Peak hour totaland projected warrants 1, 2, or 3)or														
B. Weekend Volume (Five hours total)														
Warrant 9:	Grade Cro	ssing												
A. Grade (Crossing wi	thin 140 ft	:and											
B. Peak-Ho	our Vehicul	ar Volume	es .											
Convright © 20	20 11=:=:+	. af Flasida	All Dialeta	D	- 1	ICSTM Sign	-1.\\/	1/ 7 (٠			·	10/8/2020 1	2.10.20 DA

Wilderness Corridor Study	James White Parkway Urban
Traffic Analysis	•
City of Knoxville, TN	

EXISTING 2020 ANALYSIS

Intersection												
Int Delay, s/veh	5.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	î,		ሻ	ĵ.			4			4	
Traffic Vol, veh/h	6	109	13	71	204	6	57	4	122	8	0	2
Future Vol, veh/h	6	109	13	71	204	6	57	4	122	8	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	7	131	16	86	246	7	69	5	147	10	0	2
Major/Minor N	Major1		1	Major2			Minor1			Minor2		
Conflicting Flow All	253	0	0	147	0	0	576	578	139	651	583	250
Stage 1		-	-	-	-	-	153	153	-	422	422	-
Stage 2	_	_	_	_	_	_	423	425	_	229	161	_
Critical Hdwy	4.12	_	_	4.12	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	_	-	_	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	_	-	_	-	_	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518		3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1312	-	-	1435	-	-	428	427	909	382	424	789
Stage 1	_	-	-	-	-	-	849	771	-	609	588	-
Stage 2	-	_	-	-	-	-	609	586	-	774	765	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1312	_	-	1435	-	-	405	399	909	301	396	789
Mov Cap-2 Maneuver	-	-	-	-	-	-	405	399	-	301	396	-
Stage 1	-	-	-	-	-	-	845	767	-	606	553	-
Stage 2	-	-	-	-	-	-	571	551	-	641	761	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			1.9			13.5			15.9		
HCM LOS	J . 1						В			C		
Minor Lane/Major Mvm	it N	NBLn1	EBL	EBT	EBR	WBL	WBT	WRR	SBLn1			
Capacity (veh/h)	. 1	642		-	LDIX -	1435	-	-	343			
HCM Lane V/C Ratio		0.343		<u>-</u>	_	0.06	_		0.035			
HCM Control Delay (s)		13.5	7.8	-	-	7.7	_	-	15.9			
HCM Lane LOS		13.3 B	7.6 A	_	_	Α.	_	_	13.9 C			
HCM 95th %tile Q(veh)		1.5	0	-		0.2	-	_	0.1			
HOW JOHN JUHIE Q(VEII)		1.0	U			0.2			0.1			

Intersection												
Int Delay, s/veh	4.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑ ↑		ሻ	^						4	7
Traffic Vol, veh/h	0	222	17	15	78	0	0	0	0	77	2	203
Future Vol, veh/h	0	222	17	15	78	0	0	0	0	77	2	203
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	Yield
Storage Length	_	-	-	75	-	-	_	_	-	-	-	0
Veh in Median Storage,	# -	0	-		0	-	_	0	_	-	0	-
Grade, %	<i>"</i>	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	281	22	19	99	0	0	0	0	97	3	257
Major/Minor M	lajor1		ľ	Major2					N	/linor2		
Conflicting Flow All	<u>-</u>	0	0	281	0	0				278	418	50
Stage 1		-	<u> </u>	201	-	-				137	137	-
Stage 2	_	_			_	_				141	281	_
Critical Hdwy		_		4.14	_					6.84	6.54	6.94
Critical Hdwy Stg 1	_	_	_		_	_				5.84	5.54	- 0.07
Critical Hdwy Stg 2	_	_	_	_	_	_				5.84	5.54	_
Follow-up Hdwy	_	_	_	2.22	_	_				3.52	4.02	3.32
Pot Cap-1 Maneuver	0	_	_	1278	_	0				689	524	1008
Stage 1	0	_	_		_	0				875	782	-
Stage 2	0	_	-	_	_	0				871	677	_
Platoon blocked, %	•	-	_		_							
Mov Cap-1 Maneuver	-	_	-	1278	-	-				679	0	1008
Mov Cap-2 Maneuver	_	-	_	-	_	_				679	0	-
Stage 1	_	-	_	-	_	_				875	0	_
Stage 2	-	-	_	-	-	_				858	0	-
g - <u>-</u>												
Approach	EB			WB						SB		
HCM Control Delay, s	0			1.3						10.2		
HCM LOS	- 0			1.0						В		
Minor Lane/Major Mvmt		EBT	EBR	WBL	WBT :	SBLn1	SBLn2					
Capacity (veh/h)				1278	-		1008					
HCM Lane V/C Ratio		_		0.015		0.147						
HCM Control Delay (s)		_				11.2	9.8					
HCM Lane LOS		_	-	7.9 A	_	В	9.0 A					
HCM 95th %tile Q(veh)		_		0		0.5	1					
TOW JOHN JUNIO Q(VEII)				J		0.0						

Intersection

Intersection Delay, s/veh	10.8											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	^			ħβ			414				
Traffic Vol, veh/h	157	142	0	0	62	187	31	196	19	0	0	0
Future Vol, veh/h	157	142	0	0	62	187	31	196	19	0	0	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	173	156	0	0	68	205	34	215	21	0	0	0
Number of Lanes	1	2	0	0	2	0	0	2	0	0	0	0

Approach	EB	WB	NB	
Opposing Approach	WB	EB		
Opposing Lanes	2	3	0	
Conflicting Approach Left		NB	EB	
Conflicting Lanes Left	0	2	3	
Conflicting Approach Right	NB		WB	
Conflicting Lanes Right	2	0	2	
HCM Control Delay	10.6	11	11	
HCM LOS	В	В	В	

Lane	NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	
Vol Left, %	24%	0%	100%	0%	0%	0%	0%	
Vol Thru, %	76%	84%	0%	100%	100%	100%	10%	
Vol Right, %	0%	16%	0%	0%	0%	0%	90%	
Sign Control	Stop							
Traffic Vol by Lane	129	117	157	71	71	41	208	
LT Vol	31	0	157	0	0	0	0	
Through Vol	98	98	0	71	71	41	21	
RT Vol	0	19	0	0	0	0	187	
Lane Flow Rate	142	129	173	78	78	45	228	
Geometry Grp	8	8	8	8	8	8	8	
Degree of Util (X)	0.251	0.22	0.316	0.132	0.094	0.078	0.353	
Departure Headway (Hd)	6.386	6.151	6.59	6.084	4.33	6.215	5.576	
Convergence, Y/N	Yes							
Cap	563	584	545	589	825	576	644	
Service Time	4.123	3.888	4.327	3.821	2.066	3.954	3.316	
HCM Lane V/C Ratio	0.252	0.221	0.317	0.132	0.095	0.078	0.354	
HCM Control Delay	11.3	10.6	12.4	9.7	7.5	9.5	11.3	
HCM Lane LOS	В	В	В	Α	Α	А	В	
HCM 95th-tile Q	1	0.8	1.3	0.5	0.3	0.3	1.6	

Intersection						
Int Delay, s/veh	4.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDIX		NON	ODL	<u>्ठा</u>
Traffic Vol, veh/h	4 0	10	♣ 3	29	27	식 32
Future Vol, veh/h	40	10	3	29	27	32
	0	0	0	29	0	0
Conflicting Peds, #/hr				Free	Free	Free
Sign Control	Stop	Stop	Free			
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	42	11	3	31	28	34
Major/Minor N	Minor1	N	Major1		Major2	
Conflicting Flow All	109	19	0	0	34	0
Stage 1	19	-	-	-	-	-
Stage 2	90	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	7.12	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	888	1059		_		_
Stage 1	1004	1000	_	_	1370	
Stage 1	934	_			-	
	934	-	-	-	-	-
Platoon blocked, %	070	1050	-	-	1570	
Mov Cap-1 Maneuver	872	1059	-	-	1578	-
Mov Cap-2 Maneuver	872	-	-	-	-	-
Stage 1	1004	-	-	-	-	-
Stage 2	917	-	-	-	-	-
			NB		SB	
Approach	WB				2.4	
Approach HCM Control Delay, s			0		5.4	
HCM Control Delay, s	9.2		0		3.4	
			0		3.4	
HCM Control Delay, s HCM LOS	9.2 A					007
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	9.2 A	NBT	NBRV	VBLn1	SBL	SBT
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	9.2 A	NBT -	NBRV -	904	SBL 1578	SBT
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	9.2 A		NBRV - -	904 0.058	SBL 1578 0.018	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	9.2 A	-	NBRV -	904 0.058 9.2	SBL 1578 0.018 7.3	- - 0
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	9.2 A	-	NBRV - -	904 0.058	SBL 1578 0.018	-

ntersection	
ntersection Delay, s/veh	7.9
ntersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4î			€î₽				
Traffic Vol, veh/h	25	31	0	0	44	122	6	44	10	0	0	0
Future Vol, veh/h	25	31	0	0	44	122	6	44	10	0	0	0
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	32	40	0	0	57	158	8	57	13	0	0	0
Number of Lanes	0	1	0	0	1	0	0	2	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				2		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	2				0		1					
HCM Control Delay	7.9				7.8		8					
HCM LOS	Α				Α		Α					

Lane	NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %	21%	0%	45%	0%	
Vol Thru, %	79%	69%	55%	27%	
Vol Right, %	0%	31%	0%	73%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	28	32	56	166	
LT Vol	6	0	25	0	
Through Vol	22	22	31	44	
RT Vol	0	10	0	122	
Lane Flow Rate	36	42	73	216	
Geometry Grp	7	7	2	2	
Degree of Util (X)	0.052	0.056	0.089	0.22	
Departure Headway (Hd)	5.138	4.81	4.422	3.681	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	688	734	815	957	
Service Time	2.935	2.607	2.422	1.775	
HCM Lane V/C Ratio	0.052	0.057	0.09	0.226	
HCM Control Delay	8.2	7.9	7.9	7.8	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0.2	0.3	8.0	

Intersection		
Intersection Delay, s/veh	8	
Intersection LOS	A	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	3	13	25	52	26	3	13	26	52	4	57	11	
Future Vol, veh/h	3	13	25	52	26	3	13	26	52	4	57	11	
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	18	34	71	36	4	18	36	71	5	78	15	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Lo	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach R	igh t NB			SB			WB			EB			
Conflicting Lanes Right	t 1			1			1			1			
HCM Control Delay	7.5			8.4			7.8			8			
HCM LOS	Α			Α			Α			Α			

Lane	NBLn1	EBLn1\	WBLn1	SBLn1
Vol Left, %	14%	7%	64%	6%
Vol Thru, %	29%	32%	32%	79%
Vol Right, %	57%	61%	4%	15%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	91	41	81	72
LT Vol	13	3	52	4
Through Vol	26	13	26	57
RT Vol	52	25	3	11
Lane Flow Rate	125	56	111	99
Geometry Grp	1	1	1	1
Degree of Util (X)	0.142	0.066	0.141	0.12
Departure Headway (Hd)	4.114	4.2	4.588	4.369
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	874	854	783	823
Service Time	2.129	2.218	2.606	2.385
HCM Lane V/C Ratio	0.143	0.066	0.142	0.12
HCM Control Delay	7.8	7.5	8.4	8
HCM Lane LOS	Α	Α	Α	Α
HCM 95th-tile Q	0.5	0.2	0.5	0.4

Intersection												
Int Delay, s/veh	8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			₽			414				
Traffic Vol, veh/h	30	39	0	0	59	20	22	10	0	0	0	0
Future Vol, veh/h	30	39	0	0	59	20	22	10	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	36	46	0	0	70	24	26	12	0	0	0	0
Major/Minor N	/linor2		_	Minor1		N	/lajor1					
Conflicting Flow All	93	64		-	64	6	0	0	0			
Stage 1	93	04		-	64	-	-	-	-			
Stage 1 Stage 2	93	64	-	-	04	-	_	-	-			
Critical Hdwy	7.54	6.54		_	6.54	6.94	4.14		_			
Critical Hdwy Stg 1	7.U T	0.0-	_	_	5.54	0.04	7.17	_	_			
Critical Hdwy Stg 2	6.54	5.54	_	_	J.J .	_		_				
Follow-up Hdwy	3.52	4.02	<u>-</u>	_	4.02	3.32	2.22	_	_			
Pot Cap-1 Maneuver	881	826	0	0	826	1075		_	_			
Stage 1	-	-	0	0	841	-	_	_	_			
Stage 2	904	841	0	0	-		_	_	_			
Platoon blocked, %	007	UTI		- 0				_	_			
Mov Cap-1 Maneuver	805	826	_	_	826	1075	_	_	_			
Mov Cap-1 Maneuver	805	826	<u>-</u>	_	826	-	_	<u>-</u>	<u>-</u>			
Stage 1	-	-	-	_	841	_	_	-	_			
Stage 2	810	841	_	_	-	_	_	_	_			
		- 11										
A				1610			ND					
Approach	EB			WB			NB					
HCM Control Delay, s	9.9			9.6								
HCM LOS	Α			Α								
Minor Lane/Major Mvm	t	NBL	NBT	NBR E	EBLn1V	VBLn1						
Capacity (veh/h)		-	-	-	817	877						
HCM Lane V/C Ratio		-	-	-	0.101							
HCM Control Delay (s)		-	-	-	9.9	9.6						
HCM Lane LOS		-	-	-	Α	Α						
HCM 95th %tile Q(veh)		-	-	-	0.3	0.4						

Intersection						
Int Delay, s/veh	2.3					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	00	40	<u>ન</u>	₽	00
Traffic Vol, veh/h	16	23	16	43	50	63
Future Vol, veh/h	16	23	16	43	50	63
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	21	30	21	57	66	83
Major/Minor	line 2		Mais = 4		Ania no	
	/linor2		Major1		Major2	
Conflicting Flow All	207	108	149	0	-	0
Stage 1	108	-	-	-	-	-
Stage 2	99	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	781	946	1432	-	_	-
Stage 1	916	-	-	-	-	-
Stage 2	925	_	_	-	_	-
Platoon blocked, %	0_0			_	_	_
Mov Cap-1 Maneuver	769	946	1432	_	_	_
Mov Cap-2 Maneuver	769	-	1402	_	_	<u>_</u>
Stage 1	902		_		_	
•				-		-
Stage 2	925	-	-	-	-	_
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		2		0	
HCM LOS	A		_			
	, ,					
Minor Lane/Major Mvmt	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1432	-	٠.	-	-
HCM Lane V/C Ratio		0.015	-	0.059	-	-
HCM Control Delay (s)		7.6	0	9.4	-	-
TION Control Delay (3)						
HCM Lane LOS		Α	Α	Α	-	-
		A 0	A -	0.2	-	-

	→	←	/	4	
Lane Group	EBT	WBT	SBL	SBR	
Lane Configurations	†	†	ሻ	7	
Traffic Volume (vph)	578	177	130	360	
Future Volume (vph)	578	177	130	360	
Turn Type	NA	NA	Prot	Prot	
Protected Phases	6	2	4	4	
Permitted Phases					
Detector Phase	6	2	4	4	
Switch Phase					
Minimum Initial (s)	8.0	8.0	30.0	30.0	
Minimum Split (s)	30.0	30.0	36.0	36.0	
Total Split (s)	50.0	50.0	50.0	50.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	Min	C-Min	None	None	
Act Effct Green (s)	58.0	58.0	30.0	30.0	
Actuated g/C Ratio	0.58	0.58	0.30	0.30	
v/c Ratio	0.60	0.18	0.27	0.53	
Control Delay	16.5	8.4	28.5	5.7	
Queue Delay	0.0	0.0	0.0	0.0	
Total Delay	16.5	8.4	28.5	5.7	
LOS	В	Α	С	Α	
Approach Delay	16.5	8.4	11.7		
Approach LOS	В	Α	В		
Intersection Summary					
Cycle Length: 100					
Actuated Cycle Length: 100)				
Offset: 0 (0%), Referenced		WBT. Sta	art of Yello	ow. Maste	er Intersection
Natural Cycle: 70	10 p.10.00 =			,	
Control Type: Actuated-Coc	ordinated				
Maximum v/c Ratio: 0.60					
Intersection Signal Delay: 1	3.5			Ir	ntersection LOS: B
Intersection Capacity Utiliza					CU Level of Service C
Analysis Period (min) 15					
0.111 1.51 100.6	o : ''' •	21 0 1	180.11	DI O	" D
Splits and Phases: 109: S	Sevierville F	rike & Jai	mes White	e Pkwy O	π-катр
Ø2 (R)					Ø4
50 s					50 s
—					
- 7∅6					

	•	→	←	•	
Lane Group	EBL	EBT	WBT	WBR	
Lane Configurations	ሻ	^	†	7	
Traffic Volume (vph)	479	229	177	376	
Future Volume (vph)	479	229	177	376	
Turn Type	pm+pt	NA	NA	Perm	
Protected Phases	1	6	2		
Permitted Phases	6			2	
Detector Phase	1	6	2	2	
Switch Phase					
Minimum Initial (s)	6.0	10.0	10.0	10.0	
Minimum Split (s)	15.0	30.0	30.0	30.0	
Total Split (s)	30.0	100.0	70.0	70.0	
Total Split (%)	30.0%	100.0%	70.0%	70.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	
Fotal Lost Time (s)	6.0	6.0	6.0	6.0	
_ead/Lag	Lead		Lag	Lag	
_ead-Lag Optimize?	Yes		Yes	Yes	
Recall Mode	None	Min	C-Min	C-Min	
Act Effct Green (s)	94.0	100.0	73.3	73.3	
Actuated g/C Ratio	0.94	1.00	0.73	0.73	
v/c Ratio	0.48	0.14	0.15	0.34	
Control Delay	2.9	0.1	5.9	2.1	
Queue Delay	0.1	0.0	0.0	0.0	
Total Delay	3.0	0.1	5.9	2.1	
_OS	А	Α	А	Α	
Approach Delay	, ,	2.1	3.3	, ,	
Approach LOS		A	A		
			, ,		
ntersection Summary					
Cycle Length: 100					
Actuated Cycle Length: 100		OWDT	01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Offset: 65 (65%), Reference	ed to phase	e 2:WB1,	Start of Y	ellow	
Natural Cycle: 45					
Control Type: Actuated-Coo	ordinated				
Maximum v/c Ratio: 0.48					
ntersection Signal Delay: 2					ntersection LOS: A
ntersection Capacity Utiliza	ation 65.4%	0		1(CU Level of Service C
Analysis Period (min) 15					
Splits and Phases: 110: \$	Sevierville	Pike & Ja	mes White	e Pkwv R	amns
•		4.0	•	j 10	
Ø1			Ø2 (R)		
30 S		70 s			
₽ 26					
100 s					

12.4

В

Intersection

HCM Control Delay

HCM LOS

9.2

Α

Literature Bulletin	1.40.0												
Intersection Delay, s/ve	n 10.9												
Intersection LOS	В												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	16	87	22	30	278	25	83	18	15	14	24	35	
Future Vol, veh/h	16	87	22	30	278	25	83	18	15	14	24	35	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	19	101	26	35	323	29	97	21	17	16	28	41	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach R	igh t NB			SB			WB			EB			
Conflicting Lanes Right	: 1			1			1			1			

9.8

Α

8.9

Α

Lane	NBLn1	EBLn1\	NBLn1	SBLn1
Vol Left, %	72%	13%	9%	19%
Vol Thru, %	16%	70%	83%	33%
Vol Right, %	13%	18%	8%	48%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	116	125	333	73
LT Vol	83	16	30	14
Through Vol	18	87	278	24
RT Vol	15	22	25	35
Lane Flow Rate	135	145	387	85
Geometry Grp	1	1	1	1
Degree of Util (X)	0.201	0.197	0.501	0.121
Departure Headway (Hd)	5.362	4.888	4.658	5.134
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	662	727	771	690
Service Time	3.45	2.967	2.718	3.229
HCM Lane V/C Ratio	0.204	0.199	0.502	0.123
HCM Control Delay	9.8	9.2	12.4	8.9
HCM Lane LOS	Α	Α	В	Α
HCM 95th-tile Q	0.7	0.7	2.8	0.4

Intersection												
Int Delay, s/veh	5.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	(î		ሻ	f)			4			4	
Traffic Vol, veh/h	2	127	64	183	160	8	40	2	109	6	3	3
Future Vol, veh/h	2	127	64	183	160	8	40	2	109	6	3	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	135	68	195	170	9	43	2	116	6	3	3
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	179	0	0	203	0	0	741	742	169	797	772	175
Stage 1	-	-	-	-	_	-	173	173	-	565	565	-
Stage 2	_	-	-	-	_	-	568	569	-	232	207	-
Critical Hdwy	4.12	-	-	4.12	_	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	_	-	-	-	_	_	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	_	2.218	-	-	3.518		3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1397	_	-	1369	_	_	332	344	875	305	330	868
Stage 1	-	-	-	-	-	-	829	756	-	510	508	-
Stage 2	-	_	-	-	-	-	508	506	-	771	731	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1397	-	-	1369	-	-	292	295	875	234	283	868
Mov Cap-2 Maneuver	-	-	-	-	-	-	292	295	-	234	283	-
Stage 1	-	_	-	-	-	-	828	755	-	509	436	-
Stage 2	-	-	-	-	-	-	431	434	-	666	730	-
<u> </u>												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			4.2			13.9			17.4		
HCM LOS							В			С		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		563	1397	-	-	1369	-	-	302			
HCM Lane V/C Ratio		0.285		_		0.142	_		0.042			
HCM Control Delay (s)		13.9	7.6	_	-	8.1	_	_	17.4			
HCM Lane LOS		В	A	_	_	A	_	_	C			
HCM 95th %tile Q(veh)		1.2	0	-	-	0.5	-	-	0.1			
2011)												

Intersection												
Int Delay, s/veh	6.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		∱ }			† †						र्स	7
Traffic Vol, veh/h	0	214	28	19	52	0	0	0	0	167	0	299
Future Vol., veh/h	0	214	28	19	52	0	0	0	0	167	0	299
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	Yield
Storage Length	-	-	-	75	-	-	-	-	-	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	228	30	20	55	0	0	0	0	178	0	318
Major/Minor N	/lajor1		ı	Major2					N	/linor2		
		0		228	0	0				209	323	28
Conflicting Flow All Stage 1	-	0	0	228	0	-				95	323 95	28 -
Stage 1 Stage 2	-	-	-	-	-	-				114	228	-
Critical Hdwy	-	-	-	4.14	-	-				6.84	6.54	6.94
Critical Hdwy Stg 1	_	-	-	4.14	-	-				5.84	5.54	0.94
Critical Hdwy Stg 2	-	-		-	-					5.84	5.54	
Follow-up Hdwy	_	-	_	2.22	-	_				3.52	4.02	3.32
Pot Cap-1 Maneuver	0	-	-	1337	-	0				760	593	1041
Stage 1	0	-	_	1001	-	0				918	815	1041
Stage 1	0	-	<u>-</u>	_	_	0				898	714	
Platoon blocked, %	- 0	_	_	_	_	U				000	, 1 4	
Mov Cap-1 Maneuver	_	-		1337		_				749	0	1041
Mov Cap-1 Maneuver	_	_	_	-	_	_				749	0	-
Stage 1	_	_	_	_	_					918	0	
Stage 2	_	_	_	<u>-</u>	_	_				885	0	_
Clayo Z										500	J	
				10.00								
Approach	EB			WB						SB		
HCM Control Delay, s	0			2.1						10.5		
HCM LOS										В		
Minor Lane/Major Mvm	t	EBT	EBR	WBL	WBT :	SBLn1	SBLn2					
Capacity (veh/h)		_	-	1337	-		1041					
HCM Lane V/C Ratio		-	-	0.015	-	0.237	0.306					
HCM Control Delay (s)		-	-	7.7	-	11.3	10					
HCM Lane LOS		-	-	Α	-	В	В					
HCM 95th %tile Q(veh)		-	-	0	-	0.9	1.3					
· · ·												

mersection												
Intersection Delay, s/veh	9.5											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			∱ }			र्सी के				
Traffic Vol, veh/h	150	231	0	0	46	135	25	98	27	0	0	0
Future Vol, veh/h	150	231	0	0	46	135	25	98	27	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	163	251	0	0	50	147	27	107	29	0	0	0
Number of Lanes	1	2	0	0	2	0	0	2	0	0	0	0
Approach	EB				WB		NB					

Approach	EB	WB	NB	
Opposing Approach	WB	EB		
Opposing Lanes	2	3	0	
Conflicting Approach Left		NB	EB	
Conflicting Lanes Left	0	2	3	
Conflicting Approach Right	NB		WB	
Conflicting Lanes Right	2	0	2	
HCM Control Delay	9.4	9.6	9.7	
HCM LOS	Α	А	А	

Lane	NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	
Vol Left, %	34%	0%	100%	0%	0%	0%	0%	
Vol Thru, %	66%	64%	0%	100%	100%	100%	10%	
Vol Right, %	0%	36%	0%	0%	0%	0%	90%	
Sign Control	Stop							
Traffic Vol by Lane	74	76	150	116	116	31	150	
LT Vol	25	0	150	0	0	0	0	
Through Vol	49	49	0	116	116	31	15	
RT Vol	0	27	0	0	0	0	135	
Lane Flow Rate	80	83	163	126	126	33	163	
Geometry Grp	8	8	8	8	8	8	8	
Degree of Util (X)	0.14	0.135	0.27	0.19	0.129	0.055	0.24	
Departure Headway (Hd)	6.285	5.866	5.956	5.453	3.708	5.923	5.289	
Convergence, Y/N	Yes							
Cap	573	614	597	650	949	608	683	
Service Time	3.996	3.577	3.751	3.247	1.501	3.623	2.989	
HCM Lane V/C Ratio	0.14	0.135	0.273	0.194	0.133	0.054	0.239	
HCM Control Delay	10	9.5	11	9.5	7.1	9	9.7	
HCM Lane LOS	Α	Α	В	Α	Α	Α	Α	
HCM 95th-tile Q	0.5	0.5	1.1	0.7	0.4	0.2	0.9	

Intersection						
Int Delay, s/veh	5.1					
-		WIDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	40	^	44	07	ન
Traffic Vol, veh/h	20	19	19	11	67	32
Future Vol, veh/h	20	19	19	11	67	32
Conflicting Peds, #/hr	0	0	0	_ 0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	21	20	20	12	71	34
Majay/Minay	N 4: 1		10:04		Maia #O	
	Minor1		Major1		Major2	
Conflicting Flow All	202	26	0	0	32	0
Stage 1	26	-	-	-	-	-
Stage 2	176	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	787	1050	-	-	1580	-
Stage 1	997	-	-	-	-	-
Stage 2	855	-	_	-	_	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	751	1050	_	_	1580	_
Mov Cap-2 Maneuver	751	-	_	_	1300	_
Stage 1	997	_	-	_	_	_
•	816		-	-		-
Stage 2	810	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.3		0		5	
	A		•			
HUM LUS						
HCM LOS						
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Minor Lane/Major Mvm Capacity (veh/h)	nt	NBT -	-	872	1580	SBT -
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio			-	872 0.047	1580 0.045	-
Minor Lane/Major Mvm Capacity (veh/h)		-	-	872	1580	-
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		-	-	872 0.047	1580 0.045	-
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		- -	- - -	872 0.047 9.3	1580 0.045 7.4	- - 0

Intersection												
Intersection Delay, s/veh	7.5											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			f)			€ 1₽				
Traffic Vol, veh/h	14	64	0	0	34	75	5	44	10	0	0	0
Future Vol, veh/h	14	64	0	0	34	75	5	44	10	0	0	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	15	69	0	0	37	81	5	47	11	0	0	0
Number of Lanes	0	1	0	0	1	0	0	2	0	0	0	0

Approach	EB	WB	NB	
Opposing Approach	WB	EB		
Opposing Lanes	1	1	0	
Conflicting Approach Left		NB	EB	
Conflicting Lanes Left	0	2	1	
Conflicting Approach Right	NB		WB	
Conflicting Lanes Right	2	0	1	
HCM Control Delay	7.7	7.3	7.8	
HCM LOS	Α	Α	А	

Lane	NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %	19%	0%	18%	0%	
Vol Thru, %	81%	69%	82%	31%	
Vol Right, %	0%	31%	0%	69%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	27	32	78	109	
LT Vol	5	0	14	0	
Through Vol	22	22	64	34	
RT Vol	0	10	0	75	
Lane Flow Rate	29	34	84	117	
Geometry Grp	7	7	2	2	
Degree of Util (X)	0.04	0.045	0.097	0.12	
Departure Headway (Hd)	4.973	4.661	4.169	3.694	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	714	761	851	958	
Service Time	2.745	2.433	2.237	1.767	
HCM Lane V/C Ratio	0.041	0.045	0.099	0.122	
HCM Control Delay	8	7.7	7.7	7.3	
HCM Lane LOS	А	Α	Α	Α	
HCM 95th-tile Q	0.1	0.1	0.3	0.4	

0.068 0.193 0.037 0.068

4.364 3.801 4.316 4.274

0.069 0.196 0.038 0.069

Yes

816

7.6

Α

0.1

Yes 825

2.37

7.7

Α

0.2

Yes

930

2.46 1.878 2.414

7.8

Α

0.7

Yes

808

7.8

0.2

Α

Intersection

Degree of Util (X)

Convergence, Y/N

HCM Lane V/C Ratio

HCM Control Delay

HCM Lane LOS

HCM 95th-tile Q

Service Time

Cap

Departure Headway (Hd)

Intersection Delay, s/ve	h 7.8												
Intersection LOS	Α												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	11	54	101	6	22	0	25	19	7	5	39	8	
Future Vol, veh/h	11	54	101	6	22	0	25	19	7	5	39	8	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	12	59	111	7	24	0	27	21	8	5	43	9	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	ft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	ght\B			SB			WB			EB			
Conflicting Lanes Right				1			1			1			
HCM Control Delay	7.8			7.6			7.8			7.7			
HCM LOS	Α			Α			Α			Α			
Lane	N	NBLn1 E	EBLn1V	VBLn1	SBLn1								
Vol Left, %		49%	7%	21%	10%								
Vol Thru, %		37%	33%	79%	75%								
Vol Right, %		14%	61%	0%	15%								
Sign Control		Stop	Stop	Stop	Stop								
Traffic Vol by Lane		51	166	28	52								
LT Vol		25	11	6	5								
Through Vol		19	54	22	39								
RT Vol		7	101	0	8								
Lane Flow Rate		56	182	31	57								
Geometry Grp		1	1	1	1								

Intersection												
Int Delay, s/veh	6.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			î,			414				
Traffic Vol, veh/h	28	38	0	0	17	8	11	23	2	0	0	0
Future Vol, veh/h	28	38	0	0	17	8	11	23	2	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	·-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	76	76	76	76	76	76	76	76	76	76	76	76
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	37	50	0	0	22	11	14	30	3	0	0	0
Major/Minor N	/linor2		N	/linor1		N	/lajor1					
		04			00			0	^			
Conflicting Flow All	54	61	-	-	60	17	0	0	0			
Stage 1	0 54	0 61	-	-	60	-	-	-	-			
Stage 2	7.54	6.54	-	-	0 6.54	6.94	4.14	-	-			
Critical Hdwy Critical Hdwy Stg 1	7.54	0.34	-	-	5.54	0.94	4.14	-	_			
Critical Hdwy Stg 2	6.54	5.54	-		5.54	_	_	-	_			
Follow-up Hdwy	3.52	4.02	-	-	4.02	3.32	2.22	-	-			
Pot Cap-1 Maneuver	938	829	0	0	830	1058	2.22	-	-			
•	930	029	0	0	844	1000	-	-	-			
Stage 1 Stage 2	952	843	0	0	044	-	-	-	-			
Platoon blocked, %	902	043	U	U	_			_	_			
Mov Cap-1 Maneuver	910	829	_	_	830	1058	_		_			
Mov Cap-2 Maneuver	910	829	_	_	830	1000	_	_	_			
Stage 1	910	029	_	_	844	_	_	_	_			
Stage 2	918	843	_		U TT	_	_		_			
Olaye Z	010	U 1 U	_	_		_	_		_			
Approach	EB			WB			NB					
HCM Control Delay, s	9.6			9.2								
HCM LOS	Α			Α								
Minor Lane/Major Mvm	t	NBL	NBT	NBR F	EBLn1V	VBLn1						
Capacity (veh/h)				-	862	891						
HCM Lane V/C Ratio		_	_		0.101							
HCM Control Delay (s)		_	_	_	9.6	9.2						
HCM Lane LOS		_	_	_	Α	Α						
HCM 95th %tile Q(veh)		_	_	_	0.3	0.1						
HOW OUT MINE Q(VEII)					0.0	0.1						

Intersection						
Int Delay, s/veh	2.4					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩	0.4	4.4	વ	₽	4.4
Traffic Vol, veh/h	16	24	14	67	69	11
Future Vol, veh/h	16	24	14	67	69	11
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	18	27	16	74	77	12
Major/Minor	Minor2		Major1		10ior0	
			Major1		/lajor2	
Conflicting Flow All	189	83	89	0	-	0
Stage 1	83	-	-	-	-	-
Stage 2	106	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	800	976	1506	-	-	-
Stage 1	940	-	-	-	-	-
Stage 2	918	-	-	-	-	-
Platoon blocked, %				_	-	_
Mov Cap-1 Maneuver	791	976	1506	_	_	_
Mov Cap-2 Maneuver	791	-	-	_	_	_
Stage 1	930	_	_	_	_	_
Stage 2	918	_	_	_	_	_
Stage 2	310				_	
Approach	EB		NB		SB	
HCM Control Delay, s	9.2		1.3		0	
	Α					
HCM LOS	А					
HCM LOS	A					
		ND	NDT	EDL 4	ODT	ODD
Minor Lane/Major Mvm		NBL		EBLn1	SBT	SBR
Minor Lane/Major Mvm Capacity (veh/h)		1506	-	893	-	SBR -
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	nt	1506 0.01	-	893 0.05	-	SBR - -
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	nt	1506 0.01 7.4	- - 0	893 0.05 9.2	-	-
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS	nt	1506 0.01 7.4 A	-	893 0.05 9.2 A	-	-
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	nt	1506 0.01 7.4	- - 0	893 0.05 9.2	- - -	- - -

	-	←	/	4	
Lane Group	EBT	WBT	SBL	SBR	
Lane Configurations	†	1	ሻ	7	
Traffic Volume (vph)	674	144	300	691	
Future Volume (vph)	674	144	300	691	
Turn Type	NA	NA	Prot	Prot	
Protected Phases	6	2	4	4	
Permitted Phases					
Detector Phase	6	2	4	4	
Switch Phase					
Minimum Initial (s)	8.0	8.0	30.0	30.0	
Minimum Split (s)	30.0	30.0	36.0	36.0	
Total Split (s)	50.0	50.0	50.0	50.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	
Lead/Lag	0.0	0.0	0.0	0.0	
Lead-Lag Optimize?					
Recall Mode	Min	C-Min	None	None	
Act Effct Green (s)	55.6	55.6	32.4	32.4	
Actuated g/C Ratio	0.56	0.56	0.32	0.32	
v/c Ratio	0.69	0.15	0.56	0.75	
Control Delay	21.6	9.7	31.5	7.9	
Queue Delay	0.0	0.0	0.0	0.0	
Total Delay	21.6	9.7	31.5	7.9	
LOS	Z1.0	3.1 A	31.3 C	7.9 A	
Approach Delay	21.6	9.7	15.0	A	
	21.0 C	9.7 A	15.0 B		
Approach LOS	C	A	Б		
Intersection Summary					
Cycle Length: 100					
Actuated Cycle Length: 10					
Offset: 0 (0%), Referenced	I to phase 2:	WBT, Sta	art of Yello	ow, Maste	er Intersection
Natural Cycle: 70					
Control Type: Actuated-Co	ordinated				
Maximum v/c Ratio: 0.75					
Intersection Signal Delay:					ntersection LOS: B
Intersection Capacity Utiliz	ation 70.5%			10	CU Level of Service C
Analysis Period (min) 15					
Splits and Phases: 109:	Sevierville F	Pike & Ja	mes Whit	e Pkwv O	off-Ramp
←					T 🗘
Ø2 (R)				-	™Ø4
50 s					50 s
→ Ø6					
50 s					

	۶	→	←	•	
Lane Group	EBL	EBT	WBT	WBR	
Lane Configurations	ች			7	
Traffic Volume (vph)	396	578	144	152	
Future Volume (vph)	396	578	144	152	
Turn Type	pm+pt	NA	NA	Perm	
Protected Phases	1	6	2		
Permitted Phases	6			2	
Detector Phase	1	6	2	2	
Switch Phase		-	_	_	
Minimum Initial (s)	6.0	10.0	10.0	10.0	
Minimum Split (s)	15.0	30.0	30.0	30.0	
Total Split (s)	30.0	100.0	70.0	70.0	
Total Split (%)	30.0%	100.0%	70.0%	70.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	0.0	Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	
Recall Mode	None	Min	C-Min	C-Min	
Act Effct Green (s)	94.0	100.0	79.8	79.8	
Actuated g/C Ratio	0.94	1.00	0.80	0.80	
v/c Ratio	0.39	0.34	0.00	0.00	
Control Delay	1.1	0.34	2.8	0.13	
Queue Delay	0.2	0.0	0.0	0.0	
	1.3	0.0	2.8	0.0	
Total Delay LOS	1.3 A	0.4 A	2.0 A	0.0 A	
	А	0.8	1.8	А	
Approach LOS					
Approach LOS		А	Α		
Intersection Summary					
Cycle Length: 100					
Actuated Cycle Length: 100					
Offset: 65 (65%), Reference	ed to phase	2:WBT,	Start of Yo	ellow	
Natural Cycle: 45					
Control Type: Actuated-Coo	ordinated				
Maximum v/c Ratio: 0.39					
Intersection Signal Delay: 1					ntersection LOS: A
Intersection Capacity Utiliza	ation 70.5%)		10	CU Level of Service C
Analysis Period (min) 15					
Splits and Phases: 110: \$	Sevierville I	Pike & .la	mes White	e Pkwv R	amps
•	23	- 4	•		
Ø1			Ø2 (R)		
30 s		70 s			
<u>≯</u> 176					
100 s					

Heavy Vehicles, %

h12.8												
В												
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	4			4			4			4		
49	285	75	37	147	11	30	21	41	24	21	48	
49	285	75	37	147	11	30	21	41	24	21	48	
. •		. •	• •			• •						
	EBL 49	B EBL EBT ♣ 49 285	B EBL EBT EBR	B EBL EBT EBR WBL 49 285 75 37	B EBL EBT EBR WBL WBT 49 285 75 37 147	B EBL EBT EBR WBL WBT WBR 49 285 75 37 147 11	B EBL EBT EBR WBL WBT WBR NBL 49 285 75 37 147 11 30	B EBL EBT EBR WBL WBT WBR NBL NBT 49 285 75 37 147 11 30 21	B EBL EBT EBR WBL WBT WBR NBL NBT NBR 49 285 75 37 147 11 30 21 41	B EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 49 285 75 37 147 11 30 21 41 24	B EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 49 285 75 37 147 11 30 21 41 24 21	B EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR 49 285 75 37 147 11 30 21 41 24 21 48

Mvmt Flow	56	324	85	42	167	13	34	24	47	27	24	55	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach L	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach F	RightNB			SB			WB			EB			
Conflicting Lanes Righ	t 1			1			1			1			
HCM Control Delay	15.2			10.6			9.8			9.7			
HCM LOS	С			В			Α			Α			

Lane	NBLn1	EBLn1\	NBLn1	SBLn1
Vol Left, %	33%	12%	19%	26%
Vol Thru, %	23%	70%	75%	23%
Vol Right, %	45%	18%	6%	52%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	92	409	195	93
LT Vol	30	49	37	24
Through Vol	21	285	147	21
RT Vol	41	75	11	48
Lane Flow Rate	105	465	222	106
Geometry Grp	1	1	1	1
Degree of Util (X)	0.163	0.618	0.317	0.163
Departure Headway (Hd)	5.617	4.785	5.146	5.56
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	638	758	698	645
Service Time	3.659	2.785	3.177	3.602
HCM Lane V/C Ratio	0.165	0.613	0.318	0.164
HCM Control Delay	9.8	15.2	10.6	9.7
HCM Lane LOS	Α	С	В	Α
HCM 95th-tile Q	0.6	4.3	1.4	0.6

2020 PM Peak Hour Synchro 11 Report Gresham Smith; RLM Page 11

NO BUILD ALTERNATIVE 2040 ANALYSIS

Intersection												
Int Delay, s/veh	7.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1 >		ኘ	\$			4			4	
Traffic Vol, veh/h	8	147	18	96	275	8	77	5	164	11	0	3
Future Vol, veh/h	8	147	18	96	275	8	77	5	164	11	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	10	177	22	116	331	10	93	6	198	13	0	4
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	341	0	0	199	0	0	778	781	188	878	787	336
Stage 1	-	-	-	-	-	-	208	208	-	568	568	-
Stage 2	-	-	-	-	-	-	570	573	-	310	219	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518		3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1218	-	-	1373	-	-	314	326	854	268	324	706
Stage 1	-	-	-	-	-	-	794	730	-	508	506	-
Stage 2	-	-	-	-	-	-	506	504	-	700	722	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1218	-	-	1373	-	-	290	296	854	189	295	706
Mov Cap-2 Maneuver	-	-	-	-	-	-	290	296	-	189	295	-
Stage 1	-	-	-	-	-	-	788	724	-	504	463	-
Stage 2	-	-	-	-	_	-	461	462	-	529	716	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			2			20.8			22.4		
HCM LOS							С			С		
Minor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)			1218			1373	-	-	224			
HCM Lane V/C Ratio		0.572		_		0.084	_		0.075			
HCM Control Delay (s)		20.8	8	-	_	7.9	-	-				
HCM Lane LOS		С	A	-	-	Α	-	-	C			
HCM 95th %tile Q(veh)		3.6	0	-	-	0.3	-	-	0.2			
(- /												

2040 AM No Build

Gresham Smith, RLM

Synchro 11 Report
Page 1

Intersection												
Int Delay, s/veh	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		f)		ች	↑						र्स	7
Traffic Vol, veh/h	0	299	23	20	106	0	0	0	0	104	3	273
Future Vol, veh/h	0	299	23	20	106	0	0	0	0	104	3	273
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	Yield
Storage Length	-	-	-	75	-	-	-	-	-	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	378	29	25	134	0	0	0	0	132	4	346
Major/Minor N	1ajor1			Major2					N	Minor2		
Conflicting Flow All	-	0	0	378	0	0				562	562	134
Stage 1	-	-	-	-	-	-				184	184	-
Stage 2	-	-	-	-	-	-				378	378	-
Critical Hdwy	-	-	-	4.12	-	-				6.42	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-				5.42	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-				5.42	5.52	-
Follow-up Hdwy	-	-	-	2.218	-	-				3.518	4.018	
Pot Cap-1 Maneuver	0	-	-	1180	-	0				488	436	915
Stage 1	0	-	-	-	-	0				848	747	-
Stage 2	0	-	-	-	-	0				693	615	-
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	-	-	-	1180	-	-				478	0	915
Mov Cap-2 Maneuver	-	-	-	-	-	-				478	0	-
Stage 1	-	-	-	-	-	-				848	0	-
Stage 2	-	-	-	-	-	-				678	0	-
Approach	EB			WB						SB		
HCM Control Delay, s	0			1.3						12.5		
HCM LOS										В		
Minor Lane/Major Mvmt		EBT	EBR	WBL	WBT	SBLn1	SBLn2					
Capacity (veh/h)		-	-	1180	-		915					
HCM Lane V/C Ratio		-		0.021	-	0.283						
HCM Control Delay (s)		_	-	8.1	-	15.5	11.3					
HCM Lane LOS		-	-	Α	-	С	В					
HCM 95th %tile Q(veh)		-	-	0.1	-	1.2	1.8					

Intersection

Intersection Delay, s/veh	15.3											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†			ĵ»			4				
Traffic Vol, veh/h	211	192	0	0	84	252	42	264	26	0	0	0
Future Vol, veh/h	211	192	0	0	84	252	42	264	26	0	0	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	232	211	0	0	92	277	46	290	29	0	0	0
Number of Lanes	1	1	0	0	1	0	0	1	0	0	0	0

Approach	EB	WB	NB	
Opposing Approach	WB	EB		
Opposing Lanes	1	2	0	
Conflicting Approach Left		NB	EB	
Conflicting Lanes Left	0	1	2	
Conflicting Approach Right	NB		WB	
Conflicting Lanes Right	1	0	1	
HCM Control Delay	13.6	15.1	17.6	
HCM LOS	В	С	С	

Lane	NBLn1	EBLn1	EBLn2	WBLn1	
Vol Left, %	13%	100%	0%	0%	
Vol Thru, %	80%	0%	100%	25%	
Vol Right, %	8%	0%	0%	75%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	332	211	192	336	
LT Vol	42	211	0	0	
Through Vol	264	0	192	84	
RT Vol	26	0	0	252	
Lane Flow Rate	365	232	211	369	
Geometry Grp	2	7	7	5	
Degree of Util (X)	0.602	0.433	0.364	0.555	
Departure Headway (Hd)	5.937	6.718	6.21	5.411	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	606	533	578	665	
Service Time	3.992	4.48	3.971	3.469	
HCM Lane V/C Ratio	0.602	0.435	0.365	0.555	
HCM Control Delay	17.6	14.6	12.5	15.1	
HCM Lane LOS	С	В	В	С	
HCM 95th-tile Q	4	2.2	1.7	3.4	

Intersection						
Int Delay, s/veh	4.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		f			4
Traffic Vol, veh/h	54	13	4	39	37	43
Future Vol, veh/h	54	13	4	39	37	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	_		_		_	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	0	-	-	0
Grade, %	0	_	0	_	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	57	14	4	41	39	45
IVIVIIICI IOW	J1	17	7	71	00	70
Major/Minor	Minor1	N	Major1	1	Major2	
Conflicting Flow All	148	25	0	0	45	0
Stage 1	25	-	-	-	-	_
Stage 2	123	-	-	-	-	-
Critical Hdwy	6.42	6.22	_	-	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3 318	_	_	2.218	_
Pot Cap-1 Maneuver	844	1051	_	-	1563	_
Stage 1	998	-	_	_	-	_
Stage 2	902	_	_	_	_	_
Platoon blocked, %	302	_	_	_	_	_
Mov Cap-1 Maneuver	822	1051	_	_	1563	-
				-		
Mov Cap-2 Maneuver	822	-	-	-	-	-
Stage 1	998	-	-	-	-	-
Stage 2	879	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.6		0		3.4	
HCM LOS	A				0.1	
TIOWI LOO						
Minor Lane/Major Mvn	nt	NBT	NBRV	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	858	1563	-
HCM Lane V/C Ratio		-	-	0.082	0.025	-
HCM Control Delay (s)	-	-	9.6	7.4	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh)	-	-	0.3	0.1	-
HCM 95th %tile Q(veh)	-	-	0.3	0.1	-

Intersection Delay, s/veh	8.5
Intersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ĵ.			€Î}				
Traffic Vol, veh/h	34	42	0	0	59	164	8	59	13	0	0	0
Future Vol, veh/h	34	42	0	0	59	164	8	59	13	0	0	0
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	44	55	0	0	77	213	10	77	17	0	0	0
Number of Lanes	0	1	0	0	1	0	0	2	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				2		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	2				0		1					
HCM Control Delay	8.2				8.6		8.4					
HCM LOS	Α				Α		Α					

Lane	NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %	21%	0%	45%	0%	
Vol Thru, %	79%	69%	55%	26%	
Vol Right, %	0%	31%	0%	74%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	38	43	76	223	
LT Vol	8	0	34	0	
Through Vol	30	30	42	59	
RT Vol	0	13	0	164	
Lane Flow Rate	49	55	99	290	
Geometry Grp	7	7	2	2	
Degree of Util (X)	0.074	0.079	0.125	0.312	
Departure Headway (Hd)	5.445	5.122	4.572	3.877	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	658	700	786	930	
Service Time	3.173	2.85	2.591	1.89	
HCM Lane V/C Ratio	0.074	0.079	0.126	0.312	
HCM Control Delay	8.6	8.3	8.2	8.6	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0.3	0.4	1.3	

2040 AM No Build Synchro 11 Report Page 5 Gresham Smith, RLM

Peak Hour Factor

Heavy Vehicles, %

0.73

2

0.73

2

0.73

2

0.73

2

0.73

2

0.73

2

mersection													
Intersection Delay, s/v	eh 8.5												
Intersection LOS	Α												
Movement	EBL	FBT	FBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
						115.1	.,,,,,	.,,,,,	11011		<u> </u>	0511	
Lane Configurations		- 40→			- 4			4			4		
Traffic Vol, veh/h	4	↔ 18	34	70	♣ 35	4	18	♣ 35	70	5	↔ 77	15	

0.73

2

0.73

2

0.73

2

0.73

2

0.73

2

0.73

2

Mvmt Flow	5	25	47	96	48	5	25	48	96	1	105	21	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	ghtNB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	8			9			8.4			8.5			
HCM LOS	Α			Α			Α			Α			

Lane	NBLn1	EBLn1\	NBLn1	SBLn1
Vol Left, %	15%	7%	64%	5%
Vol Thru, %	28%	32%	32%	79%
Vol Right, %	57%	61%	4%	15%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	123	56	109	97
LT Vol	18	4	70	5
Through Vol	35	18	35	77
RT Vol	70	34	4	15
Lane Flow Rate	168	77	149	133
Geometry Grp	1	1	1	1
Degree of Util (X)	0.202	0.095	0.199	0.169
Departure Headway (Hd)	4.318	4.451	4.807	4.58
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	831	803	745	783
Service Time	2.349	2.489	2.843	2.612
HCM Lane V/C Ratio	0.202	0.096	0.2	0.17
HCM Control Delay	8.4	8	9	8.5
HCM Lane LOS	Α	Α	Α	Α
HCM 95th-tile Q	0.8	0.3	0.7	0.6

Intersection												
Int Delay, s/veh	8.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ĵ.			414				
Traffic Vol, veh/h	40	53	0	0	79	27	30	13	0	0	0	0
Future Vol, veh/h	40	53	0	0	79	27	30	13	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	48	63	0	0	94	32	36	15	0	0	0	0
Major/Minor N	/linor2		١	Minor1		N	/lajor1					
Conflicting Flow All	127	87	-	-	87	8	0	0	0			
Stage 1	0	0	-	-	87	-	-	-	-			
Stage 2	127	87	-	-	0	-	-	-	-			
Critical Hdwy	7.54	6.54	-	-	6.54	6.94	4.14	-	-			
Critical Hdwy Stg 1	-	-	-	-	5.54	-	-	-	-			
Critical Hdwy Stg 2	6.54	5.54	-	-	-	-	-	-	-			
Follow-up Hdwy	3.52	4.02	-	-	4.02	3.32	2.22	-	-			
Pot Cap-1 Maneuver	834	802	0	0	802	1072	-	-	-			
Stage 1	-	-	0	0	822	-	-	-	-			
Stage 2	863	822	0	0	-	-	-	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver	736	802	-	-	802	1072	-	-	-			
Mov Cap-2 Maneuver	736	802	-	-	802	-	-	-	-			
Stage 1	-	-	-	-	822	-	-	-	-			
Stage 2	741	822	-	-	-	-	-	-	-			
Approach	EB			WB			NB					
HCM Control Delay, s	10.4			9.9								
HCM LOS	В			Α								
Minor Lane/Major Mvm	t	NBL	NBT	NBR E	EBLn1V							
Capacity (veh/h)		-	-	-	772	857						
HCM Lane V/C Ratio		-	-	-	0.143							
HCM Control Delay (s)		-	-	-	10.4	9.9						
HCM Lane LOS		-	-	-	В	Α						
HCM 95th %tile Q(veh)		-	-	-	0.5	0.5						

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	₩.	LDIX	NDL			אומט
Lane Configurations Traffic Vol, veh/h	22	31	22	વ 58	1 → 67	84
Future Vol, veh/h	22	31	22	58	67	84
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	29	41	29	76	88	111
Major/Minor	Minor2		Major1	N	//ajor2	
		144				^
Conflicting Flow All	278		199	0	-	0
Stage 1	144	-	-	-	-	-
Stage 2	134	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	712	903	1373	-	-	-
Stage 1	883	-	-	-	-	-
Stage 2	892	-	-	-	-	-
Platoon blocked, %				-	_	-
Mov Cap-1 Maneuver	696	903	1373	_	_	_
Mov Cap-2 Maneuver	696	-	-	_	_	_
Stage 1	864	_	_	_	_	_
Stage 2	892	_	_	_	_	_
Stage 2	032			_		_
Approach	EB		NB		SB	
HCM Control Delay, s	9.9		2.1		0	
HCM LOS	Α					
N4: 1		ND	Not	EDL 4	057	000
Minor Lane/Major Mvm	זנ	NBL	NBII	EBLn1	SBT	SBR
Capacity (veh/h)		1373	-	804	-	-
HCM Lane V/C Ratio		0.021		0.087	-	-
HCM Control Delay (s)		7.7	0	9.9	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	0.3	-	-

	-	←	/	4	
Lane Group	EBT	WBT	SBL	SBR	
Lane Configurations			ች	7	
Traffic Volume (vph)	778	238	175	485	
Future Volume (vph)	778	238	175	485	
Turn Type	NA	NA	Prot	Prot	
Protected Phases	6	2	4	4	
Permitted Phases					
Detector Phase	6	2	4	4	
Switch Phase					
Minimum Initial (s)	8.0	8.0	30.0	30.0	
Minimum Split (s)	30.0	30.0	36.0	36.0	
Total Split (s)	50.0	50.0	50.0	50.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	
. ,	0.0	0.0	0.0	0.0	
Lead/Lag					
Lead-Lag Optimize?	N 4:	O Mira	Mana	Mana	
Recall Mode	Min	C-Min	None	None	
Act Effct Green (s)	58.0	58.0	30.0	30.0	
Actuated g/C Ratio	0.58	0.58	0.30	0.30	
v/c Ratio	0.81	0.25	0.37	0.66	
Control Delay	24.1	15.3	30.1	8.3	
Queue Delay	0.0	0.0	0.0	0.0	
Total Delay	24.1	15.3	30.1	8.3	
LOS	С	В	С	Α	
Approach Delay	24.1	15.3	14.1		
Approach LOS	С	В	В		
Intersection Summary					
Cycle Length: 100					
Actuated Cycle Length: 10	0				
Offset: 0 (0%), Referenced		:WBT, Sta	art of Yello	ow, Maste	er Intersection
Natural Cycle: 80	•	,		,	
Control Type: Actuated-Co	ordinated				
Maximum v/c Ratio: 0.81					
Intersection Signal Delay:	18.9			In	ntersection LOS: B
Intersection Capacity Utiliz					CU Level of Service D
Analysis Period (min) 15	-0.001177.170	•		1	50 20101 01 0011100 2
Analysis i choa (min) is					
Splits and Phases: 109:	Sevierville I	Pike & Ja	mes White	e Pkwy O	ff-Ramp
←				_	→
Ø2 (R)					Ø4
50 s					50 s
→ Ø6					
50 s					

	•	-	←	•
Lane Group	EBL	EBT	WBT	WBR
Lane Configurations	ሻ	<u></u>		7
Traffic Volume (vph)	645	308	238	506
Future Volume (vph)	645	308	238	506
Turn Type	pm+pt	NA	NA	Perm
Protected Phases	1	6	2	
Permitted Phases	6			2
Detector Phase	1	6	2	2
Switch Phase				
Minimum Initial (s)	6.0	10.0	10.0	10.0
Minimum Split (s)	15.0	30.0	30.0	30.0
Total Split (s)	30.0	100.0	70.0	70.0
Total Split (%)		100.0%	70.0%	70.0%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0
Lead/Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes		Yes	Yes
Recall Mode	None	Min	C-Min	C-Min
Act Effct Green (s)	94.0	100.0	54.6	54.6
Actuated g/C Ratio	0.94	1.00	0.55	0.55
v/c Ratio	0.63	0.19	0.27	0.59
Control Delay	5.7	0.2	17.3	15.3
Queue Delay	0.3	0.0	0.0	0.0
Total Delay	6.0	0.2	17.3	15.3
LOS	A	A	В	В
Approach Delay		4.1	15.9	
Approach LOS		A	В	
		R	U	
Intersection Summary				
Cycle Length: 100				
Actuated Cycle Length: 10		.		
Offset: 65 (65%), Reference	ed to phase	e 2:WBT, S	Start of Yo	ellow
Natural Cycle: 50				
Control Type: Actuated-Co	ordinated			
Maximum v/c Ratio: 0.63				
Intersection Signal Delay:				lr
Intersection Capacity Utiliz	ation 77.1%)		I
Analysis Period (min) 15				
Splits and Phases: 110:	Sevierville	Pike & Jar	nes White	e Pkwy R
→ _{a1}		4*		
Ø1		70 s	Ø2 (R)	
JU S		70 S		
- 7ø6				
100 s				

Intersection					
Intersection Delay, san	/veh16.5				
Intersection LOS	С				

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	22	117	30	40	374	34	112	24	20	19	32	47	
Future Vol, veh/h	22	117	30	40	374	34	112	24	20	19	32	47	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	26	136	35	47	435	40	130	28	23	22	37	55	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	igh t NB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	11			21.5			11.9			10.4			
HCM LOS	В			С			В			В			

Lane	NBLn1	EBLn1\	WBLn1	SBLn1
Vol Left, %	72%	13%	9%	19%
Vol Thru, %	15%	69%	83%	33%
Vol Right, %	13%	18%	8%	48%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	156	169	448	98
LT Vol	112	22	40	19
Through Vol	24	117	374	32
RT Vol	20	30	34	47
Lane Flow Rate	181	197	521	114
Geometry Grp	1	1	1	1
Degree of Util (X)	0.308	0.303	0.742	0.189
Departure Headway (Hd)	6.117	5.547	5.13	5.966
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	586	645	703	598
Service Time	4.18	3.607	3.175	4.037
HCM Lane V/C Ratio	0.309	0.305	0.741	0.191
HCM Control Delay	11.9	11	21.5	10.4
HCM Lane LOS	В	В	С	В
HCM 95th-tile Q	1.3	1.3	6.7	0.7

Intersection												
Int Delay, s/veh	7.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ.		*	ĵ.			4			4	
Traffic Vol, veh/h	3	171	86	246	216	11	54	3	147	8	4	4
Future Vol, veh/h	3	171	86	246	216	11	54	3	147	8	4	4
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	182	91	262	230	12	57	3	156	9	4	4
Major/Minor N	Major1		<u> </u>	Major2			Minor1			Minor2		
Conflicting Flow All	242	0	0	273	0	0	998	1000	228	1073	1039	236
Stage 1	-	-	-	-	-	-	234	234	-	760	760	-
Stage 2	-	-	-	-	-	-	764	766	-	313	279	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	
Pot Cap-1 Maneuver	1324	-	-	1290	-	-	223	243	811	198	231	803
Stage 1	-	-	-	-	-	-	769	711	-	398	414	-
Stage 2	-	-	-	-	-	-	396	412	-	698	680	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1324	-	-	1290	-	-	184	193	811	133	184	803
Mov Cap-2 Maneuver	-	-	-	-	-	-	184	193	-	133	184	-
Stage 1	-	-	-	-	-	-	767	710	-	397	330	-
Stage 2	-	-	-	-	-	-	310	328	-	560	679	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			4.4			22.7			26.6		
HCM LOS							С			D		
Minor Lane/Major Mvm	it N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)			1324	-		1290	-		184			
HCM Lane V/C Ratio		0.522		-		0.203	-		0.093			
HCM Control Delay (s)		22.7	7.7	-	-	8.5	-	-				
HCM Lane LOS		С	Α	-	-	Α	-	-	D			
HCM 95th %tile Q(veh)		2.9	0	-	-	8.0	-	-	0.3			

Intersection												
Int Delay, s/veh	8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ĵ.		ሻ	1						4	7
Traffic Vol, veh/h	0	288	38	26	70	0	0	0	0	226	0	403
Future Vol, veh/h	0	288	38	26	70	0	0	0	0	226	0	403
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	Yield
Storage Length	-	-	-	75	-	-	-	-	-	-	-	0
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	306	40	28	74	0	0	0	0	240	0	429
Major/Minor N	/lajor1			Major2					ı	Minor2		
Conflicting Flow All	-	0	0	306	0	0				436	436	74
Stage 1	_	-	_	-	-	-				130	130	_
Stage 2	_	-	_	_	_	_				306	306	_
Critical Hdwy	-	_	-	4.12	_	-				6.42	6.52	6.22
Critical Hdwy Stg 1	-	-	_	-	-	-				5.42	5.52	-
Critical Hdwy Stg 2	-	_	-	-	-	-				5.42	5.52	-
Follow-up Hdwy	-	-	-	2.218	-	-				3.518	4.018	3.318
Pot Cap-1 Maneuver	0	_	-	1255	-	0				578	514	988
Stage 1	0	-	_	-	-	0				896	789	-
Stage 2	0	-	-	-	-	0				747	662	-
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	-	-	-	1255	-	-				565	0	988
Mov Cap-2 Maneuver	-	-	-	-	-	-				565	0	-
Stage 1	-	-	-	-	-	-				896	0	-
Stage 2	-	-	-	-	-	-				731	0	-
·												
Approach	EB			WB						SB		
HCM Control Delay, s	0			2.1						13.1		
HCM LOS										В		
Minor Lane/Major Mvmt	t	EBT	EBR	WBL	WBT :	SBLn1	SBLn2					
Capacity (veh/h)		-	-	1255	-	565	988					
HCM Lane V/C Ratio		-	-	0.022	-	0.426						
HCM Control Delay (s)		-	-	7.9	-	16	11.4					
HCM Lane LOS		-	-	A	-	С	В					
HCM 95th %tile Q(veh)		-	-	0.1	-	2.1	2.2					

Intersection												
Intersection Delay, s/veh	12.3											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†			f)			4				
Traffic Vol, veh/h	202	312	0	0	62	182	34	132	36	0	0	0
Future Vol, veh/h	202	312	0	0	62	182	34	132	36	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	220	339	0	0	67	198	37	143	39	0	0	0
Number of Lanes	1	1	0	0	1	0	0	1	0	0	0	0

Approach	EB	WB	NB	
Opposing Approach	WB	EB		
Opposing Lanes	1	2	0	
Conflicting Approach Left		NB	EB	
Conflicting Lanes Left	0	1	2	
Conflicting Approach Right	NB		WB	
Conflicting Lanes Right	1	0	1	
HCM Control Delay	13.3	10.8	11.8	
HCM LOS	В	В	В	

Lane	NBLn1	EBLn1	EBLn2	WBLn1	
Vol Left, %	17%	100%	0%	0%	
Vol Thru, %	65%	0%	100%	25%	
Vol Right, %	18%	0%	0%	75%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	202	202	312	244	
LT Vol	34	202	0	0	
Through Vol	132	0	312	62	
RT Vol	36	0	0	182	
Lane Flow Rate	220	220	339	265	
Geometry Grp	2	7	7	5	
Degree of Util (X)	0.348	0.367	0.519	0.364	
Departure Headway (Hd)	5.714	6.012	5.506	4.941	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	630	602	658	732	
Service Time	3.743	3.718	3.213	2.951	
HCM Lane V/C Ratio	0.349	0.365	0.515	0.362	
HCM Control Delay	11.8	12.2	14	10.8	
HCM Lane LOS	В	В	В	В	
HCM 95th-tile Q	1.6	1.7	3	1.7	

Intersection						
Int Delay, s/veh	5.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Vol, veh/h	27	26	26	15	90	44
Future Vol, veh/h	27	26	26	15	90	44
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	_	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	_	0	_	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	28	27	27	16	95	46
mmer ion	20	=!	_,	10		10
	Minor1		Major1		Major2	
Conflicting Flow All	271	35	0	0	43	0
Stage 1	35	-	-	-	-	-
Stage 2	236	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		-	-	2.218	-
Pot Cap-1 Maneuver	718	1038	-	-	1566	-
Stage 1	987	-	-	-	-	-
Stage 2	803	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	673	1038	-	-	1566	-
Mov Cap-2 Maneuver	673	-	-	-	-	-
Stage 1	987	_	_	-	-	-
Stage 2	753	-	-	-	-	-
Ŭ						
Λ	\		, LIE		0.0	
Approach	WB		NB		SB	
HCM Control Delay, s	9.8		0		5	
HCM LOS	Α					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)			-	813	1566	-
HCM Lane V/C Ratio		<u>-</u>		0.069	0.06	_
HCM Control Delay (s	\	_	_	9.8	7.4	0
HCM Lane LOS		_	_	Α	A	A
HCM 95th %tile Q(veh)	_	_	0.2	0.2	-
	7			J.L	J.L	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			ĵ.			413-				
Traffic Vol, veh/h	19	86	0	0	46	101	7	60	13	0	0	0
Future Vol, veh/h	19	86	0	0	46	101	7	60	13	0	0	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	20	92	0	0	49	109	8	65	14	0	0	0
Number of Lanes	0	1	0	0	1	0	0	2	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				2		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	2				0		1					
HCM Control Delay	8				7.7		8					
HCM LOS	Α				Α		Α					

Lane	NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %	19%	0%	18%	0%	
Vol Thru, %	81%	70%	82%	31%	
Vol Right, %	0%	30%	0%	69%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	37	43	105	147	
LT Vol	7	0	19	0	
Through Vol	30	30	86	46	
RT Vol	0	13	0	101	
Lane Flow Rate	40	46	113	158	
Geometry Grp	7	7	2	2	
Degree of Util (X)	0.057	0.063	0.136	0.169	
Departure Headway (Hd)	5.199	4.891	4.347	3.859	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	691	735	830	933	
Service Time	2.912	2.604	2.347	1.868	
HCM Lane V/C Ratio	0.058	0.063	0.136	0.169	
HCM Control Delay	8.2	7.9	8	7.7	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0.2	0.5	0.6	

Intersection

Intersection Delay, s/v	veh 8.3											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	15	73	136	8	30	0	34	26	9	7	53	11
Future Vol, veh/h	15	73	136	8	30	0	34	26	9	7	53	11
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	16	80	149	9	33	0	37	29	10	8	58	12
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Annroach	FR			WR			NR			SB		

Approach	EB	WB	NB	SB	
Opposing Approach	WB	EB	SB	NB	
Opposing Lanes	1	1	1	1	
Conflicting Approach Lef	t SB	NB	EB	WB	
Conflicting Lanes Left	1	1	1	1	
Conflicting Approach Rig	hNB	SB	WB	EB	
Conflicting Lanes Right	1	1	1	1	
HCM Control Delay	8.5	7.9	8.2	8.1	
HCM LOS	Α	Α	А	Α	

Lane	NBLn1	EBLn1\	WBLn1	SBLn1
Vol Left, %	49%	7%	21%	10%
Vol Thru, %	38%	33%	79%	75%
Vol Right, %	13%	61%	0%	15%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	69	224	38	71
LT Vol	34	15	8	7
Through Vol	26	73	30	53
RT Vol	9	136	0	11
Lane Flow Rate	76	246	42	78
Geometry Grp	1	1	1	1
Degree of Util (X)	0.098	0.273	0.053	0.099
Departure Headway (Hd)	4.659	3.997	4.59	4.564
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	770	901	782	786
Service Time	2.681	2.01	2.609	2.586
HCM Lane V/C Ratio	0.099	0.273	0.054	0.099
HCM Control Delay	8.2	8.5	7.9	8.1
HCM Lane LOS	Α	Α	Α	Α
HCM 95th-tile Q	0.3	1.1	0.2	0.3

Intersection												
Int Delay, s/veh	7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			(î			414				
Traffic Vol, veh/h	38	51	0	0	23	11	15	31	3	0	0	0
Future Vol, veh/h	38	51	0	0	23	11	15	31	3	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	76	76	76	76	76	76	76	76	76	76	76	76
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	50	67	0	0	30	14	20	41	4	0	0	0
Major/Minor N	Minor2		1	Minor1		ı	Major1					
Conflicting Flow All	76	85	-	-	83	23	0	0	0			
Stage 1	0	0	_	-	83	-	_	_	_			
Stage 2	76	85	_	_	0	_	-	_	_			
Critical Hdwy	7.54	6.54	_	-	6.54	6.94	4.14	_	_			
Critical Hdwy Stg 1	-	-	-	-	5.54	-	-	-	-			
Critical Hdwy Stg 2	6.54	5.54	_	_	-	_	-	_	-			
Follow-up Hdwy	3.52	4.02	-	-	4.02	3.32	2.22	_	-			
Pot Cap-1 Maneuver	905	804	0	0	806	1048	-	_	-			
Stage 1	-	-	0	0	825	_	-	-	-			
Stage 2	924	824	0	0	-	-	_	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver	867	804	-	-	806	1048	-	-	-			
Mov Cap-2 Maneuver	867	804	-	-	806	-	-	-	-			
Stage 1	-	-	-	-	825	-	-	-	-			
Stage 2	878	824	-	-	-	-	-	-	-			
, i												
Approach	EB			WB			NB					
HCM Control Delay, s	10			9.4								
HCM LOS	В			Α								
Minor Lane/Major Mvm	t	NBL	NBT	NBR I	EBLn1V	VBLn1						
Capacity (veh/h)		-	-	-	830	871						
HCM Lane V/C Ratio		-	-	_	0.141							
HCM Control Delay (s)		-	_	_	10	9.4						
HCM Lane LOS		-	-	-	В	A						
HCM 95th %tile Q(veh)		-	-	-	0.5	0.2						

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			सी	₽	
Traffic Vol, veh/h	22	32	19	90	93	15
Future Vol, veh/h	22	32	19	90	93	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	24	36	21	100	103	17
Major/Minor	Minora		Major1		10ior?	
	Minor2		Major1		//ajor2	
Conflicting Flow All	254	112	120	0	-	0
Stage 1	112	-	-	-	-	-
Stage 2	142	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuver	735	941	1468	-	-	-
Stage 1	913	-	-	-	-	-
Stage 2	885	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	724	941	1468	-	-	-
Mov Cap-2 Maneuver	724	-	-	-	-	-
Stage 1	899	-	-	-	-	-
Stage 2	885	-	-	-	-	-
Approach	EB		NB		SB	
Approach						
HCM Control Delay, s	9.6		1.3		0	
HCM LOS	Α					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1468	-		_	_
HCM Lane V/C Ratio		0.014		0.072	_	_
HCM Control Delay (s)		7.5	0	9.6	_	-
HCM Lane LOS		Α	A	A	_	_
HCM 95th %tile Q(veh)	0	-	0.2	_	_
				J		

ce & James White Pkwy Off-Ramp	James White Pkwy - Urban Wilderness
→ ← ↓ ✓	

	-	•	•	*
Lane Group	EBT	WBT	SBL	SBR
Lane Configurations	^	†	7	7
Traffic Volume (vph)	908	194	404	931
Future Volume (vph)	908	194	404	931
Turn Type	NA	NA	Prot	Prot
Protected Phases	6	2	4	4
Permitted Phases				
Detector Phase	6	2	4	4
Switch Phase				
Minimum Initial (s)	8.0	8.0	30.0	30.0
Minimum Split (s)	30.0	30.0	36.0	36.0
Total Split (s)	50.0	50.0	50.0	50.0
Total Split (%)	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	Min	C-Min	None	None
Act Effct Green (s)	45.6	45.6	42.4	42.4
Actuated g/C Ratio	0.46	0.46	0.42	0.42
v/c Ratio	1.14	0.24	0.57	0.98
Control Delay	104.1	12.0	25.2	35.1
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	104.1	12.0	25.2	35.1
LOS	F	В	С	D
Approach Delay	104.1	12.0	32.1	
Approach LOS	F	В	С	
Intersection Summary				

Intersection Summary

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:WBT, Start of Yellow, Master Intersection

Natural Cycle: 90

Control Type: Actuated-Coordinated

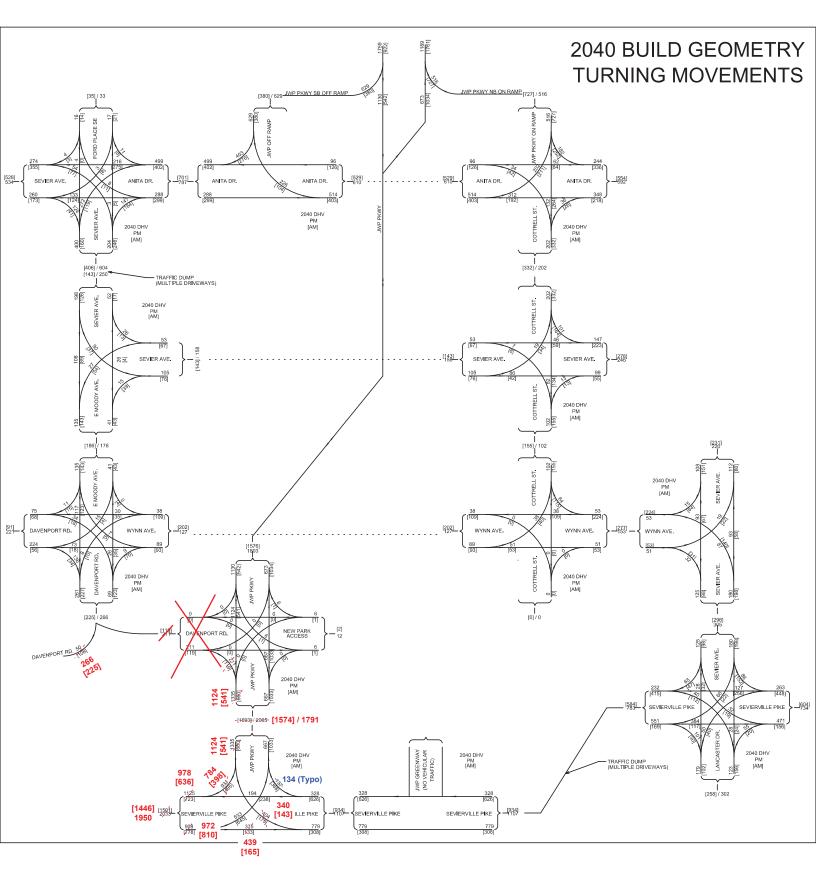
Maximum v/c Ratio: 1.14

Intersection Signal Delay: 57.3 Intersection LOS: E
Intersection Capacity Utilization 133.1% ICU Level of Service H

Analysis Period (min) 15

Splits and Phases: 109: Sevierville Pike & James White Pkwy Off-Ramp

	•	→	←	•		
Lane Group	EBL	EBT	WBT	WBR		
Lane Configurations	*	<u> </u>	<u> </u>	7		
Traffic Volume (vph)	533	779	194	205		
Future Volume (vph)	533	779	194	205		
Turn Type	pm+pt	NA	NA	Perm		
Protected Phases	1	6	2	. •		
Permitted Phases	6			2		
Detector Phase	1	6	2	2		
Switch Phase						
Minimum Initial (s)	6.0	10.0	10.0	10.0		
Minimum Split (s)	15.0	30.0	30.0	30.0		
Total Split (s)	30.0	100.0	70.0	70.0		
Total Split (%)	30.0%		70.0%	70.0%		
Yellow Time (s)	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0	2.0	2.0		
_ost Time Adjust (s)	0.0	0.0	0.0	0.0		
Fotal Lost Time (s)	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	3.0	Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	Min	C-Min	C-Min		
Act Effct Green (s)	94.0	100.0	69.5	69.5		
Actuated g/C Ratio	0.94	1.00	0.70	0.70		
//c Ratio	0.52	0.46	0.16	0.19		
Control Delay	1.3	0.3	7.9	2.0		
Queue Delay	0.6	0.0	0.0	0.0		
Total Delay	1.8	0.3	7.9	2.0		
OS	A	A	A	Α		
Approach Delay		0.9	4.8			
Approach LOS		Α	Α.			
•		, ,				
ntersection Summary						
Cycle Length: 100	`					
Actuated Cycle Length: 100		OWDT	01 1 61	. 11 .		
Offset: 65 (65%), Reference	ed to phase	e 2:WBT,	Start of Y	ellow		
Natural Cycle: 45	a malina a tarat					
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.52					(
Intersection Signal Delay: 1		0/			itersection LOS: A	
Intersection Capacity Utiliza	ation 133.1	%		IC	CU Level of Service H	
Analysis Period (min) 15						
Onlite and Dhessey 440:	Covionill-	Dika 0 I	maa \\/b:±	o Dlava d	amna	
Splits and Phases: 110:	Sevierville	PIKE & Jai	rnes vvnit	e Pkwy R	amps	
→ _{Ø1}		1	ø2 (R)			
30 s		70 s	(4)			
→ Ø6						
100 s						


Synchro 11 Report 2040 PM No Build Gresham Smith, RLM Page 1

Intersection Delay, s/veh27.3 Intersection LOS D	Intersection				
Intersection LOS D	Intersection Delay, s/vel	h27.3			
	Intersection LOS	D			

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	66	384	101	50	198	15	40	28	55	32	28	65	
Future Vol, veh/h	66	384	101	50	198	15	40	28	55	32	28	65	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	75	436	115	57	225	17	45	32	63	36	32	74	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	igh t NB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	40.2			14.6			12			11.9			
HCM LOS	Е			В			В			В			

Lane	NBLn1	EBLn1\	WBLn1	SBLn1
Vol Left, %	33%	12%	19%	26%
Vol Thru, %	23%	70%	75%	22%
Vol Right, %	45%	18%	6%	52%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	123	551	263	125
LT Vol	40	66	50	32
Through Vol	28	384	198	28
RT Vol	55	101	15	65
Lane Flow Rate	140	626	299	142
Geometry Grp	1	1	1	1
Degree of Util (X)	0.258	0.916	0.493	0.259
Departure Headway (Hd)	6.639	5.368	5.934	6.576
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	542	682	610	547
Service Time	4.663	3.368	3.934	4.602
HCM Lane V/C Ratio	0.258	0.918	0.49	0.26
HCM Control Delay	12	40.2	14.6	11.9
HCM Lane LOS	В	Е	В	В
HCM 95th-tile Q	1	12.1	2.7	1

RIIII C	ΔΙ	TERN	IATIVE	2040	ANAL'	2124
DUILL	, ~ .	_ L N N	1 2 1 1 V L	ZU+U	AINAL	

*NOTE: The changes shown on this figure were made after discussions with TDOT and the City of Knoxville determined that there would be no connection from Davenport Road/E. Moody Road to James White Parkway. These changes were made on 12/9/2020.

Intersection												
Int Delay, s/veh	8.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	(î		ሻ	(4			4	
Traffic Vol, veh/h	8	124	41	119	275	8	77	5	164	11	0	3
Future Vol, veh/h	8	124	41	119	275	8	77	5	164	11	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	10	149	49	143	331	10	93	6	198	13	0	4
Major/Minor N	/lajor1		1	Major2		- 1	Minor1		- 1	Minor2		
Conflicting Flow All	341	0	0	198	0	0	818	821	174	918	840	336
Stage 1	-	-	-	-	-	-	194	194	- ', '	622	622	-
Stage 2	_	_	_	_	_	_	624	627	_	296	218	_
Critical Hdwy	4.12	_	-	4.12	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		_	_	-	_	_	6.12	5.52		6.12	5.52	-
Critical Hdwy Stg 2	-	-	_	-	_	_	6.12	5.52	_	6.12	5.52	-
	2.218	-	-	2.218	_	-	3.518		3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1218	-	-	1375	-	-	295	309	869	252	302	706
Stage 1	-	-	-	-	-	-	808	740	-	474	479	-
Stage 2	-	-	-	-	-	-	473	476	-	712	723	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1218	-	-	1375	-	-	268	275	869	175	268	706
Mov Cap-2 Maneuver	-	-	-	-	_	-	268	275	-	175	268	-
Stage 1	-	-	-	-	-	-	802	734	-	470	429	-
Stage 2	-	-	-	-	-	-	422	426	-	541	717	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			2.3			22.3			23.7		
HCM LOS	J. 1						C			C		
Minor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SRI n1			
Capacity (veh/h)		498	1218	-	LDIX	1375	-	- 1001	209			
HCM Lane V/C Ratio		0.595		<u>-</u>		0.104	-		0.081			
HCM Control Delay (s)		22.3	8	-	-	7.9	-	-	23.7			
HCM Lane LOS		22.3 C	A	-	-	7.9 A	-	-	23.7 C			
HCM 95th %tile Q(veh)		3.8	0	-	-	0.3	_	-	0.3			
HOW JOHN JOHNE Q(VEII)		3.0	U	_		0.0	_		0.0			

Intersection						
Int Delay, s/veh	5.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		↑	↑		ሻ	7
Traffic Vol, veh/h	0	299	126	0	104	276
Future Vol, veh/h	0	299	126	0	104	276
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	Yield
Storage Length	_	-	_	-	0	0
Veh in Median Storage,	# -	0	0	_	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	378	159	0	132	349
WWWIICTIOW	U	010	100	U	102	040
	1ajor1		Major2		Minor2	
Conflicting Flow All	-	0	-	0	537	159
Stage 1	-	-	-	-	159	-
Stage 2	-	-	-	-	378	-
Critical Hdwy	-	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	-	-	3.518	
Pot Cap-1 Maneuver	0	-	-	0	505	886
Stage 1	0	-	-	0	870	-
Stage 2	0	-	-	0	693	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	-	-	-	-	505	886
Mov Cap-2 Maneuver	-	-	-	-	505	-
Stage 1	-	-	-	-	870	-
Stage 2	-	-	-	-	693	-
, and the second se						
A	ED		WD		SB	
Approach	EB		WB			
HCM Control Delay, s	0		0		12.5	
HCM LOS					В	
Minor Lane/Major Mvmt		EBT	WBT:	SBLn1	SBLn2	
Capacity (veh/h)		-	-		886	
HCM Lane V/C Ratio		-	-	0.261		
HCM Control Delay (s)		_	_		11.7	
HCM Lane LOS		-	-	В	В	
HCM 95th %tile Q(veh)		-	_	1	1.9	

Intersection												
Intersection Delay, s/veh	15.3											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†			ĵ»			4				
Traffic Vol, veh/h	211	192	0	0	84	252	42	264	26	0	0	0

Future Vol, veh/h	211	192	0	0	84	252	42	264	26	0	0	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	232	211	0	0	92	277	46	290	29	0	0	0
Number of Lanes	1	1	0	0	1	0	0	1	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				2		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				1		2					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	1				0		1					
HCM Control Delay	13.6				15.1		17.6					
HCM LOS	В				С		С					

Lane	NBLn1	EBLn1	EBLn2	WBLn1	
Vol Left, %	13%	100%	0%	0%	
Vol Thru, %	80%	0%	100%	25%	
Vol Right, %	8%	0%	0%	75%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	332	211	192	336	
LT Vol	42	211	0	0	
Through Vol	264	0	192	84	
RT Vol	26	0	0	252	
Lane Flow Rate	365	232	211	369	
Geometry Grp	2	7	7	5	
Degree of Util (X)	0.602	0.433	0.364	0.555	
Departure Headway (Hd)	5.937	6.718	6.21	5.411	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	606	533	578	665	
Service Time	3.992	4.48	3.971	3.469	
HCM Lane V/C Ratio	0.602	0.435	0.365	0.555	
HCM Control Delay	17.6	14.6	12.5	15.1	
HCM Lane LOS	С	В	В	С	
HCM 95th-tile Q	4	2.2	1.7	3.4	

Synchro 11 Report 2040 AM Build Page 3 Gresham Smith, RLM

Intersection						
Int Delay, s/veh	4					
		WED	NOT	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		₽			र्स
Traffic Vol, veh/h	54	13	4	39	37	89
Future Vol, veh/h	54	13	4	39	37	89
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	57	14	4	41	39	94
	V.		-			V 1
	Minor1		Major1		Major2	
Conflicting Flow All	197	25	0	0	45	0
Stage 1	25	-	-	-	-	-
Stage 2	172	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	_	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	792	1051	_	-	1563	_
Stage 1	998	-	_	_	_	-
Stage 2	858	_	_	_	_	_
Platoon blocked, %	000		_	_		_
Mov Cap-1 Maneuver	771	1051	_	_	1563	_
Mov Cap-1 Maneuver	771	-	_		1000	_
Stage 1	998	_	_	_		_
	836			-	_	_
Stage 2	030	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.8		0		2.2	
HCM LOS	А					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-		1563	-
HCM Lane V/C Ratio		-	-	0.087		-
HCM Control Delay (s)		-	-	9.8	7.4	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh))	-	-	0.3	0.1	-
	,					

Intersection Delay, s/veh 9	Intersection			
	Intersection Delay, s/veh	9		
intersection LOS	Intersection LOS	Α		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			f)			€1 }				
Traffic Vol, veh/h	34	42	0	0	59	164	8	134	13	0	0	0
Future Vol, veh/h	34	42	0	0	59	164	8	134	13	0	0	0
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	44	55	0	0	77	213	10	174	17	0	0	0
Number of Lanes	0	1	0	0	1	0	0	2	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				2		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	2				0		1					
HCM Control Delay	8.6				9.2		9					
HCM LOS	Α				А		Α					

Lane	NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %	11%	0%	45%	0%	
Vol Thru, %	89%	84%	55%	26%	
Vol Right, %	0%	16%	0%	74%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	75	80	76	223	
LT Vol	8	0	34	0	
Through Vol	67	67	42	59	
RT Vol	0	13	0	164	
Lane Flow Rate	97	104	99	290	
Geometry Grp	7	7	2	2	
Degree of Util (X)	0.147	0.152	0.133	0.332	
Departure Headway (Hd)	5.424	5.256	4.846	4.133	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	659	681	739	872	
Service Time	3.17	3.002	2.881	2.157	
HCM Lane V/C Ratio	0.147	0.153	0.134	0.333	
HCM Control Delay	9.1	9	8.6	9.2	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.5	0.5	0.5	1.5	

Intersection														
Intersection Delay, s/v	eh 8.9													
Intersection LOS	Α													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations		Δ			<i>4</i> 5			41			412			

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	4	18	34	70	35	4	18	35	70	5	123	15	
Future Vol, veh/h	4	18	34	70	35	4	18	35	70	5	123	15	
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	5	25	47	96	48	5	25	48	96	7	168	21	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	ft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Rig	gh t NB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	8.2			9.3			8.6			9.2			
HCM LOS	Α			Α			Α			Α			

Lane	NBLn1	EBLn1\	WBLn1	SBLn1
Vol Left, %	15%	7%	64%	3%
Vol Thru, %	28%	32%	32%	86%
Vol Right, %	57%	61%	4%	10%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	123	56	109	143
LT Vol	18	4	70	5
Through Vol	35	18	35	123
RT Vol	70	34	4	15
Lane Flow Rate	168	77	149	196
Geometry Grp	1	1	1	1
Degree of Util (X)	0.206	0.098	0.206	0.251
Departure Headway (Hd)	4.406	4.61	4.96	4.62
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	812	773	721	776
Service Time	2.449	2.664	3.008	2.663
HCM Lane V/C Ratio	0.207	0.1	0.207	0.253
HCM Control Delay	8.6	8.2	9.3	9.2
HCM Lane LOS	Α	Α	Α	Α
HCM 95th-tile Q	8.0	0.3	0.8	1

Intersection												
Int Delay, s/veh	1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			î,			414				
Traffic Vol, veh/h	40	53	0	0	109	115	0	0	0	0	0	0
Future Vol, veh/h	40	53	0	0	109	115	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	48	63	0	0	130	137	0	0	0	0	0	0
Major/Minor N	//ajor1			Major2			Minor1					
Conflicting Flow All	267	0	_	-	_	0	358	426	63			
Stage 1	-	-	_	-	_	-	159	159	-			
Stage 2	-	_	_	_	_	_	199	267	_			
Critical Hdwy	4.12	_	_	_	_	_	6.42	6.52	6.22			
Critical Hdwy Stg 1	-	-	_	_	-	-	5.42	5.52	_			
Critical Hdwy Stg 2	_	-	-	-	-	-	5.42	5.52	-			
	2.218	-	-	_	-	-		4.018	3.318			
Pot Cap-1 Maneuver	1297	-	0	0	-	_	640	520	1002			
Stage 1	-	-	0	0	-	-	870	766	-			
Stage 2	-	-	0	0	-	-	835	688	-			
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1297	-	-	-	-	-	616	0	1002			
Mov Cap-2 Maneuver	-	-	-	-	-	-	616	0	-			
Stage 1	-	-	-	-	-	-	837	0	-			
Stage 2	-	-	-	-	-	-	835	0	-			
Approach	EB			WB			NB					
HCM Control Delay, s	3.4			0			0					
HCM LOS							A					
Minor Lane/Major Mvm	t N	NBLn11	VBI n2	EBL	EBT	WBT	WBR					
Capacity (veh/h)	· 1		-		-		-					
HCM Lane V/C Ratio		_		0.037	_	_	_					
HCM Control Delay (s)		0	0	7.9	0	_						
HCM Lane LOS		A	A	Α.5	A	_	_					
HCM 95th %tile Q(veh)		_	-	0.1	_	_	_					
TOW COUT JULIC Q(VEII)				V. 1								

Intersection						
Int Delay, s/veh	4.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			सी	f)	
Traffic Vol, veh/h	22	31	140	58	67	84
Future Vol, veh/h	22	31	140	58	67	84
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-		-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	29	41	184	76	88	111
IVIVIIIL FIOW	29	41	104	70	00	111
Major/Minor	Minor2	ı	Major1	N	/lajor2	
Conflicting Flow All	588	144	199	0	-	0
Stage 1	144	-	-	-	-	-
Stage 2	444	_	-	-	_	-
Critical Hdwy	6.42	6.22	4.12	-	-	_
Critical Hdwy Stg 1	5.42	-	_	_	-	-
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318	2 218	_	_	_
Pot Cap-1 Maneuver	471	903	1373	_	_	_
Stage 1	883	-	-	_	_	_
Stage 2	646	_	_		_	
Platoon blocked, %	040	-	-	-	-	_
	40E	903	1373	-	-	-
Mov Cap-1 Maneuver			13/3	-	-	-
Mov Cap-2 Maneuver	405	-	-	-	-	-
Stage 1	759	-	-	-	-	-
Stage 2	646	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.8		5.7		0	
HCM LOS	В		5.1		U	
TIOWI LOG	U					
Minor Lane/Major Mvn	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1373	-	598	-	-
HCM Lane V/C Ratio		0.134	-	0.117	-	-
HCM Control Delay (s)	8	0	11.8	-	-
HCM Lane LOS		A	A	В	-	-
HCM 95th %tile Q(veh)	0.5	-	0.4	-	-
	,					

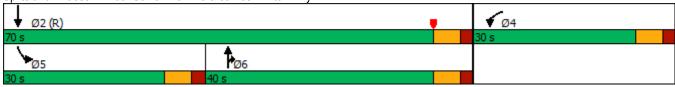
	•	*	†	~	-	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	†	7	¥	†
Traffic Volume (vph)	238	388	645	165	143	398
Future Volume (vph)	238	388	645	165	143	398
Turn Type	Prot	Free	NA	Prot	Prot	NA
Protected Phases	4		6	6	5	2
Permitted Phases		Free				
Detector Phase	4		6	6	5	2
Switch Phase						
Minimum Initial (s)	5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	30.0		30.0	30.0	30.0	30.0
Total Split (s)	30.0		40.0	40.0	30.0	70.0
Total Split (%)	30.0%		40.0%	40.0%	30.0%	70.0%
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			Yes	Yes	Yes	
Recall Mode	None		Max	Max	None	C-Max
Act Effct Green (s)	19.6	100.0	48.1	48.1	14.4	68.4
Actuated g/C Ratio	0.20	1.00	0.48	0.48	0.14	0.68
v/c Ratio	0.77	0.28	0.81	0.22	0.63	0.35
Control Delay	53.0	0.4	33.3	5.6	51.1	8.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	53.0	0.4	33.3	5.6	51.1	8.1
LOS	D	Α	С	Α	D	Α
Approach Delay	20.4		27.7			19.5
Approach LOS	С		С			В
Intonocation Commons						

Intersection Summary

Cycle Length: 100
Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:SBT, Start of Yellow

Natural Cycle: 100


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.81 Intersection Signal Delay: 23.1 Intersection Capacity Utilization 70.1%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 109: Sevierville Pike & James White Pkwy

2040 AM Build Gresham Smith, RLM

Intersection					
Intersection Delay, s/v	veh15.6				
Intersection LOS	С				

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	22	117	30	40	256	152	112	24	20	19	32	47	
Future Vol, veh/h	22	117	30	40	256	152	112	24	20	19	32	47	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	26	136	35	47	298	177	130	28	23	22	37	55	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	gh t NB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	11			19.7			11.8			10.4			
HCM LOS	В			С			В			В			

Lane	NBLn1	EBLn1\	WBLn1	SBLn1
Vol Left, %	72%	13%	9%	19%
Vol Thru, %	15%	69%	57%	33%
Vol Right, %	13%	18%	34%	48%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	156	169	448	98
LT Vol	112	22	40	19
Through Vol	24	117	256	32
RT Vol	20	30	152	47
Lane Flow Rate	181	197	521	114
Geometry Grp	1	1	1	1
Degree of Util (X)	0.306	0.301	0.718	0.187
Departure Headway (Hd)	6.067	5.514	4.962	5.913
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	590	648	729	604
Service Time	4.128	3.571	3.005	3.983
HCM Lane V/C Ratio	0.307	0.304	0.715	0.189
HCM Control Delay	11.8	11	19.7	10.4
HCM Lane LOS	В	В	С	В
HCM 95th-tile Q	1.3	1.3	6.1	0.7

Intersection						
Int Delay, s/veh	0					
		WDD	NDT	NDD	CDI	CDT
	WBL		NBT	NBR	SBL	SBT
Lane Configurations	0	* *	†	0	1	€ 11
Traffic Vol, veh/h	0	1	1033	0	1	541
Future Vol, veh/h	0	1	1033	0	1	541
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	1	1123	0	1	588
Major/Minor M	linor1	N	Major1	N	//ajor2	
	-	562			1123	0
Conflicting Flow All			0	0		
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	0	470	-	-	618	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	470	-	-	618	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_	-	-	-	-	-
A	\A/D		, LID		0.5	
Approach	WB		NB		SB	
HCM Control Delay, s	12.7		0		0	
HCM LOS	В					
			MDDV	VBLn1	SBL	SBT
Minor Lane/Major Mymt		NRI	NRRV			וטט
Minor Lane/Major Mvmt		NBT				
Capacity (veh/h)		-	-	470	618	-
Capacity (veh/h) HCM Lane V/C Ratio		-	-	470 0.002	618 0.002	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		- - -	- - -	470 0.002 12.7	618 0.002 10.8	<u>-</u> 0
Capacity (veh/h) HCM Lane V/C Ratio		-	-	470 0.002	618 0.002	-

Intersection												
Int Delay, s/veh	7.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	ĵ.			4			4	
Traffic Vol, veh/h	3	133	124	272	216	11	54	3	147	8	4	4
Future Vol, veh/h	3	133	124	272	216	11	54	3	147	8	4	4
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	141	132	289	230	12	57	3	156	9	4	4
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	242	0	0	273	0	0	1031	1033	207	1107	1093	236
Stage 1	-	-	-	-	_	_	213	213		814	814	
Stage 2	_	-	-	-	_	_	818	820	-	293	279	-
Critical Hdwy	4.12	-	-	4.12	_	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	_	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	_	-	-	-	_	_	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	_	2.218	_	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1324	_	-	1290	_	_	211	232	833	188	214	803
Stage 1	-	-	-	-	-	-	789	726	-	372	391	-
Stage 2	-	_	-	-	-	-	370	389	-	715	680	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1324	-	-	1290	-	-	170	180	833	124	166	803
Mov Cap-2 Maneuver	-	-	-	-	_	-	170	180	-	124	166	-
Stage 1	-	-	-	-	-	-	787	725	-	371	303	-
Stage 2	-	-	-	-	_	-	282	302	-	577	679	-
Ü												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			4.7			24.3			28.4		
HCM LOS							С			D		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		399	1324	-	-	1290	-	-	171			
HCM Lane V/C Ratio		0.544		_		0.224	_	_	0.1			
HCM Control Delay (s)		24.3	7.7	_	_	8.6	_	_	28.4			
HCM Lane LOS		C C	A	_	_	A	_	_	20.4 D			
HCM 95th %tile Q(veh)		3.1	0	_	_	0.9	_	_	0.3			
		J .,				3.0			0.0			

8					
EBL	EBT	WBT	WBR	SBL	SBR
					7
0	288	96	0	226	403
0	288	96	0	226	403
0	0	0	0	0	0
Free	Free	Free	Free	Stop	Stop
-	None	-		-	Yield
-	-	-	-	0	0
# -	0	0	-	0	-
-	0	0	-	0	-
94	94	94	94	94	94
2	2	2	2	2	2
0	306	102	0	240	429
oior1		/aiar0		/inar?	
					400
	U				102
	-				-
	-	-			-
	-	-			6.22
		-			-
-	-	-			-
-	-	-			
	-	-			953
	-	-			-
0	-	-	0	747	-
	-	-			
-	-	-	-		953
-	-	-	-		-
-	-	-	-		-
-	-	-	-	747	-
FB		WR		SB	
U		- 0			
				D	
	EBT	WBT:	SBLn1	SBLn2	
	-	-	599	953	
	-	-	0.401	0.45	
	-	-	15	11.8	
			_	_	
	-	-	1.9	B 2.4	
	8 EBL 0 0 0 Free	EBL EBT 0 288 0 0 288 0 0 0 Free Free - None - 0 - 0 94 94 2 2 0 306 ajor1	EBL EBT WBT 0 288 96 0 288 96 0 0 0 0 Free Free Free - None # - 0 0 94 94 94 2 2 2 2 0 306 102 ajor1 Major2 - 0	EBL EBT WBT WBR	EBL EBT WBT WBR SBL ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 0 0 226 0

Intersection

Number of Lanes

Intersection Delay, s/veh	12.3											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†			f)			4				
Traffic Vol, veh/h	202	312	0	0	62	182	34	132	36	0	0	0
Future Vol, veh/h	202	312	0	0	62	182	34	132	36	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	220	339	0	0	67	198	37	143	39	0	0	0

Approach	EB	WB	NB	
Opposing Approach	WB	EB		
Opposing Lanes	1	2	0	
Conflicting Approach Left		NB	EB	
Conflicting Lanes Left	0	1	2	
Conflicting Approach Right	NB		WB	
Conflicting Lanes Right	1	0	1	
HCM Control Delay	13.3	10.8	11.8	
HCM LOS	В	В	В	

Lane	NBLn1	EBLn1	EBLn2	WBLn1	
Vol Left, %	17%	100%	0%	0%	
Vol Thru, %	65%	0%	100%	25%	
Vol Right, %	18%	0%	0%	75%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	202	202	312	244	
LT Vol	34	202	0	0	
Through Vol	132	0	312	62	
RT Vol	36	0	0	182	
Lane Flow Rate	220	220	339	265	
Geometry Grp	2	7	7	5	
Degree of Util (X)	0.348	0.367	0.519	0.364	
Departure Headway (Hd)	5.714	6.012	5.506	4.941	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	630	602	658	732	
Service Time	3.743	3.718	3.213	2.951	
HCM Lane V/C Ratio	0.349	0.365	0.515	0.362	
HCM Control Delay	11.8	12.2	14	10.8	
HCM Lane LOS	В	В	В	В	
HCM 95th-tile Q	1.6	1.7	3	1.7	

Intersection						
Int Delay, s/veh	4.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Vol, veh/h	27	26	26	15	90	108
Future Vol, veh/h	27	26	26	15	90	108
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	28	27	27	16	95	114
IVIVIIIL FIOW	20	21	21	10	90	114
Major/Minor I	Minor1	N	Major1	N	Major2	
Conflicting Flow All	339	35	0	0	43	0
Stage 1	35	-	-	_	-	_
Stage 2	304	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	_	-	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	657	1038	_	_	1566	_
Stage 1	987	-	_	_	-	_
Stage 2	748	_	-	_	_	_
Platoon blocked, %	740		_	_		_
Mov Cap-1 Maneuver	614	1038	_	_	1566	_
Mov Cap-1 Maneuver	614	-	_	_	-	_
Stage 1	987	_	-	_	-	<u>-</u>
_	699		-	-		-
Stage 2	099	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.1		0		3.4	
HCM LOS	В					
Minor Lane/Major Mvm	<u>it</u>	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	768	1566	-
HCM Lane V/C Ratio		-	-	0.073	0.06	-
HCM Control Delay (s)		-	-	10.1	7.4	0
				В	Α	Α
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	0.2	0.2	

Intersection Delay, s/veh 8	Intersection			
	Intersection Delay, s/veh	8		
Intersection LOS A	Intersection LOS	Α		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f)			€ 1₽				
Traffic Vol, veh/h	19	86	0	0	46	101	7	82	13	0	0	0
Future Vol, veh/h	19	86	0	0	46	101	7	82	13	0	0	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	20	92	0	0	49	109	8	88	14	0	0	0
Number of Lanes	0	1	0	0	1	0	0	2	0	0	0	0
Approach	EB				WB		NB					
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				2		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	2				0		1					
HCM Control Delay	8.1				7.7		8.2					
HCM LOS	Α				Α		Α					

Lane	NBLn1	NBLn2	EBLn1	WBLn1
Vol Left, %	15%	0%	18%	0%
Vol Thru, %	85%	76%	82%	31%
Vol Right, %	0%	24%	0%	69%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	48	54	105	147
LT Vol	7	0	19	0
Through Vol	41	41	86	46
RT Vol	0	13	0	101
Lane Flow Rate	52	58	113	158
Geometry Grp	7	7	2	2
Degree of Util (X)	0.074	0.08	0.138	0.172
Departure Headway (Hd)	5.183	4.94	4.403	3.924
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	693	727	817	918
Service Time	2.9	2.657	2.414	1.933
HCM Lane V/C Ratio	0.075	0.08	0.138	0.172
HCM Control Delay	8.3	8.1	8.1	7.7
HCM Lane LOS	А	Α	Α	Α
HCM 95th-tile Q	0.2	0.3	0.5	0.6

Intersection

Cap

Service Time

HCM Lane V/C Ratio

HCM Control Delay

HCM Lane LOS

HCM 95th-tile Q

751

2.8

8.3

0.3

Α

0.101

864

8.9

Α

1.2

749

2.19 2.811 2.651

0.285 0.056 0.191

8.1

Α

0.2

776

8.7

0.7

Α

Intersection Delay, s/vel	า 8.7												
Intersection LOS	Α												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	15	73	136	8	30	0	34	26	9	7	117	11	
Future Vol, veh/h	15	73	136	8	30	0	34	26	9	7	117	11	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	16	80	149	9	33	0	37	29	10	8	129	12	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	ft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Rig	ghtNB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	8.9			8.1			8.3			8.7			
HCM LOS	Α			Α			Α			Α			
Lane	١	NBLn1 I	EBLn1V	VBLn1	SBLn1								
Vol Left, %		49%	7%	21%	5%								
Vol Thru, %		38%	33%	79%	87%								
Vol Right, %		13%	61%	0%	8%								
Sign Control		Stop	Stop	Stop	Stop								
Traffic Vol by Lane		69	224	38	135								
LT Vol		34	15	8	7								
Through Vol		26	73	30	117								
RT Vol		9	136	0	11								
Lane Flow Rate		76	246	42	148								
Geometry Grp		1	1	1	1								
Degree of Util (X)		0.1		0.055	0.19								
Departure Headway (Ho)	4.768	4.169	4.78	4.621								
Convergence, Y/N		Yes	Yes	Yes	Yes								

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ની			(414				
Traffic Vol, veh/h	38	51	0	0	38	64	0	0	0	0	0	0
Future Vol, veh/h	38	51	0	0	38	64	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	76	76	76	76	76	76	76	76	76	76	76	76
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	50	67	0	0	50	84	0	0	0	0	0	0
Major/Minor I	Major1		ı	Major2			Minor1					
Conflicting Flow All	134	0	-		-	0	259	301	67			
Stage 1	-	-	-	-	-	-	167	167	-			
Stage 2	-	-	_	-	-	-	92	134	_			
Critical Hdwy	4.12	-	-	-	-	-	6.42	6.52	6.22			
Critical Hdwy Stg 1	-	-	-	-	-	-	5.42	5.52	-			
Critical Hdwy Stg 2	-	-	-	-	-	-	5.42	5.52	-			
Follow-up Hdwy	2.218	-	-	-	-	-		4.018	3.318			
Pot Cap-1 Maneuver	1451	-	0	0	-	-	730	612	997			
Stage 1	-	-	0	0	-	-	863	760	-			
Stage 2	-	-	0	0	-	-	932	785	-			
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1451	-	-	-	-	-	704	0	997			
Mov Cap-2 Maneuver	-	-	-	-	-	-	704	0	-			
Stage 1	-	-	-	-	-	-	832	0	-			
Stage 2	-	-	-	-	-	-	932	0	-			
Approach	EB			WB			NB					
HCM Control Delay, s	3.2			0			0					
HCM LOS							A					
							, (
Minor Lane/Major Mvm	it N	NBLn11	JRI n2	EBL	EBT	WBT	WBR					
Capacity (veh/h)	ic I	-	NDLIIZ -		LDI	VVD1	יום יי					
HCM Lane V/C Ratio		-		0.034	_	_	_					
HCM Control Delay (s)		0	0	7.6	0	-	_					
HCM Lane LOS		A	A	7.0 A	A	_	_					
HCM 95th %tile Q(veh)		- -	-	0.1	-	_						
HOW JOHN JUHE Q(VEII)				U. 1								

Intersection						
Int Delay, s/veh	3.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIX	INDL	4	₽	ODIX
Traffic Vol, veh/h	19	32	87	93	93	15
Future Vol, veh/h	19	32	87	93	93	15
	0	0	0	93	93	0
Conflicting Peds, #/hr						
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	21	36	97	103	103	17
Major/Minor 1	Minor2		Major1	Λ.	/lajor2	
Conflicting Flow All	409	112	120	0	-	0
Stage 1	112	-	-	-	-	-
Stage 2	297	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518			-	-	-
Pot Cap-1 Maneuver	599	941	1468	-	-	-
Stage 1	913	-	-	-	-	-
Stage 2	754	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	557	941	1468	-	_	-
Mov Cap-2 Maneuver	557	_	_	_	-	_
Stage 1	849	_	_	_	_	_
Stage 2	754	_	_	_	_	_
Olage 2	704					
Approach	EB		NB		SB	
HCM Control Delay, s	10.2		3.7		0	
HCM LOS	В					
Minor Lane/Major Mvm	ıt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1468	_	749	_	_
HCM Lane V/C Ratio		0.066	_	0.076	_	_
HCM Control Delay (s)		7.6	0	10.2	-	_
HCM Lane LOS		Α.	A	10.2 B	_	_
LIGIVI LAITE LUG					-	
HCM 95th %tile Q(veh)		0.2	_	0.2	-	

	•	•	†	/	>	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*	7	↑	7	ሻ	↑	
Traffic Volume (vph)	194	134	533	439	340	784	
Future Volume (vph)	194	134	533	439	340	784	
Turn Type	Prot	Free	NA	Prot	Prot	NA	
Protected Phases	4		6	6	5	2	
Permitted Phases		Free					
Detector Phase	4		6	6	5	2	
Switch Phase							
Minimum Initial (s)	5.0		5.0	5.0	5.0	5.0	
Minimum Split (s)	30.0		30.0	30.0	30.0	30.0	
Total Split (s)	30.0		39.0	39.0	31.0	70.0	
Total Split (%)	30.0%		39.0%	39.0%	31.0%	70.0%	
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0	
Lead/Lag			Lag	Lag	Lead		
Lead-Lag Optimize?			Yes	Yes	Yes		
Recall Mode	None		Max	Max	None	C-Max	
Act Effct Green (s)	16.8	100.0	40.6	40.6	24.6	71.2	
Actuated g/C Ratio	0.17	1.00	0.41	0.41	0.25	0.71	
v/c Ratio	0.69	0.09	0.75	0.51	0.83	0.63	
Control Delay	50.9	0.1	35.5	4.6	52.7	11.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	50.9	0.1	35.5	4.6	52.7	11.1	
LOS	D	Α	D	Α	D	В	
Approach Delay	30.1		21.5			23.7	
Approach LOS	С		С			С	
Intersection Summary							
Cycle Length: 100							
Actuated Cycle Length: 10		0 0DT 0					
Offset: 34 (34%), Reference	ed to phase	2:SBT, S	Start of Ye	ellow			
Natural Cycle: 90							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.83	00 =					100.0	
Intersection Signal Delay:						n LOS: C	
Intersection Capacity Utiliz	ation 72.6%			10	JU Level	of Service	· C
Analysis Period (min) 15							
Splits and Phases: 109:	Sevierville F	ike & Ja	mes Whit	e Pkwy			
İ				,			- Lau
▼ Ø2 (R)							♥ Ø 4

Intersection

HCM Control Delay

HCM LOS

39.6

Ε

Intersection Delay, s/ve	eh26.8												
Intersection LOS	D												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	66	384	101	50	127	86	40	28	55	32	28	65	
Future Vol, veh/h	66	384	101	50	127	86	40	28	55	32	28	65	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	75	436	115	57	144	98	45	32	63	36	32	74	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach L	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach F	RightNB			SB			WB			EB			
Conflicting Lanes Righ	t 1			1			1			1			

11.9

В

11.8

В

13.9

В

Lane	NBLn1	EBLn1\	NBLn1	SBLn1
Vol Left, %	33%	12%	19%	26%
Vol Thru, %	23%	70%	48%	22%
Vol Right, %	45%	18%	33%	52%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	123	551	263	125
LT Vol	40	66	50	32
Through Vol	28	384	127	28
RT Vol	55	101	86	65
Lane Flow Rate	140	626	299	142
Geometry Grp	1	1	1	1
Degree of Util (X)	0.257	0.913	0.478	0.258
Departure Headway (Hd)	6.608	5.347	5.761	6.545
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	545	682	631	550
Service Time	4.631	3.347	3.761	4.57
HCM Lane V/C Ratio	0.257	0.918	0.474	0.258
HCM Control Delay	11.9	39.6	13.9	11.8
HCM Lane LOS	В	Е	В	В
HCM 95th-tile Q	1	12	2.6	1

Intersection						
Int Delay, s/veh	0.1					
	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	₩DIX	†	NOIN	ODL	4∱
Traffic Vol, veh/h	0	6	T ₱ 667	0	6	4 T 1124
Future Vol, veh/h	0	6	667	0	6	1124
<u> </u>	0	0	007	0	0	0
Conflicting Peds, #/hr	Stop	Stop		Free	Free	Free
Sign Control RT Channelized			Free	None		None
	-		-	ivone	-	ivone
Storage Length		0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	7	725	0	7	1222
Major/Minor Mi	inor1	N	Major1	N	Major2	
Conflicting Flow All	_	363	0	0	725	0
Stage 1	_	-	-	_	125	-
Stage 2	_	<u>-</u>	_	<u>-</u>	_	_
Critical Hdwy		6.94	_	_	4.14	_
	_	0.94		_	4.14	-
Critical Holys Stg 1	-		-	-		
Critical Hdwy Stg 2	-	3.32	-	_	2.22	-
Follow-up Hdwy	-	634	-		874	
Pot Cap-1 Maneuver	0		-	-		-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %		004	-	-	074	-
Mov Cap-1 Maneuver	-	634	-	-	874	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.7		0		0.1	
HCM LOS	В		U		0.1	
TIOWI LOO	U					
NAire and a market in the		NET	MDD	MDL 4	001	OPT
Minor Lane/Major Mvmt		NBT	NBKV	VBLn1	SBL	SBT
Canacity (yeh/h)		-	-	634	874	-
Capacity (veh/h)				N N1	0.007	-
HCM Lane V/C Ratio		-	-			
HCM Lane V/C Ratio HCM Control Delay (s)		-	-	10.7	9.2	0.1
HCM Lane V/C Ratio						

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	Gresham Smith; RLM	Date	10/6/2020
Agency		Analysis Year	2040
Jurisdiction	City of Knoxville	Time Period Analyzed	AM
Project Description	James White Parkway - Urban Wilderness	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	NB		
Number of Lanes (N), In	2	Terrain Type	Rolling
Segment Length (L), ft	-	Percent Grade, %	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Access Point Density, pts/mi	1.0
Lane Width, ft	11	Left-Side Lateral Clearance (LCR), ft	4
Median Type	Divided	Total Lateral Clearance (TLC), ft	7
Free-Flow Speed (FFS), mi/h	41.6		
Direction 1 Adjustment Fact	ors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 1 Demand and Cap	pacity		
Volume(V) veh/h	1034	Heavy Vehicle Adjustment Factor (fHV)	0.962
Peak Hour Factor	0.89	Flow Rate (Vp), pc/h/ln	604
Total Trucks, %	2.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.32
Direction 1 Speed and Densi	ty	<u>'</u>	•
Lane Width Adjustment (fLW)	1.9	Average Speed (S), mi/h	41.6
Total Lateral Clearance Adj. (fLLC)	1.3	Density (D), pc/mi/ln	14.5
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	В
Access Point Density Adjustment (fA)	0.3		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	581	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.90
. ,,	24	Bicycle Level of Service (LOS)	С

		Highway Report	
Project Information			
Analyst	Gresham Smith; RLM	Date	10/6/2020
Agency		Analysis Year	2040
Jurisdiction	City of Knoxville	Time Period Analyzed	AM
Project Description	James White Parkway - Urban Wilderness	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	SB		
Number of Lanes (N), In	2	Terrain Type	Rolling
Segment Length (L), ft	-	Percent Grade, %	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Access Point Density, pts/mi	1.0
Lane Width, ft	11	Left-Side Lateral Clearance (LCR), ft	4
Median Type	Divided	Total Lateral Clearance (TLC), ft	7
Free-Flow Speed (FFS), mi/h	41.6		
Direction 2 Adjustment Fact	ors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 2 Demand and Cap	pacity		
Volume(V) veh/h	542	Heavy Vehicle Adjustment Factor (fHV)	0.962
Peak Hour Factor	0.89	Flow Rate (Vp), pc/h/ln	316
Total Trucks, %	2.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.17
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	1.9	Average Speed (S), mi/h	41.6
Total Lateral Clearance Adj. (fLLC)	1.3	Density (D), pc/mi/ln	7.6
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.3		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	304	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.57
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	Gresham Smith; RLM	Date	10/6/2020
Agency		Analysis Year	2040 Build
Jurisdiction	City of Knoxville	Time Period Analyzed	PM
Project Description	James White Parkway - Urban Wilderness	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	NB		
Number of Lanes (N), In	2	Terrain Type	Rolling
Segment Length (L), ft	-	Percent Grade, %	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Access Point Density, pts/mi	1.0
Lane Width, ft	11	Left-Side Lateral Clearance (LCR), ft	4
Median Type	Divided	Total Lateral Clearance (TLC), ft	7
Free-Flow Speed (FFS), mi/h	41.6		
Direction 1 Adjustment Fact	ors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 1 Demand and Cap	pacity		
Volume(V) veh/h	673	Heavy Vehicle Adjustment Factor (fHV)	0.962
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	372
Total Trucks, %	2.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.20
Direction 1 Speed and Densi	ty	<u>'</u>	•
Lane Width Adjustment (fLW)	1.9	Average Speed (S), mi/h	41.6
Total Lateral Clearance Adj. (fLLC)	1.3	Density (D), pc/mi/ln	8.9
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	358	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.65
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	Gresham Smith; RLM	Date	10/6/2020
Agency		Analysis Year	2040 Build
Jurisdiction	City of Knoxville	Time Period Analyzed	PM
Project Description	James White Parkway - Urban Wilderness	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	SB		
Number of Lanes (N), In	2	Terrain Type	Rolling
Segment Length (L), ft	-	Percent Grade, %	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Access Point Density, pts/mi	1.0
Lane Width, ft	11	Left-Side Lateral Clearance (LCR), ft	4
Median Type	Divided	Total Lateral Clearance (TLC), ft	7
Free-Flow Speed (FFS), mi/h	41.6		
Direction 2 Adjustment Fact	ors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 2 Demand and Cap	pacity		
Volume(V) veh/h	1130	Heavy Vehicle Adjustment Factor (fHV)	0.962
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	625
Total Trucks, %	2.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.33
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	1.9	Average Speed (S), mi/h	41.6
Total Lateral Clearance Adj. (fLLC)	1.3	Density (D), pc/mi/ln	15.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	В
Access Point Density Adjustment (fA)	0.3		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	601	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.91
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С

APPPENDIX I	Ξ
--------------------	---

Field Review Documentation

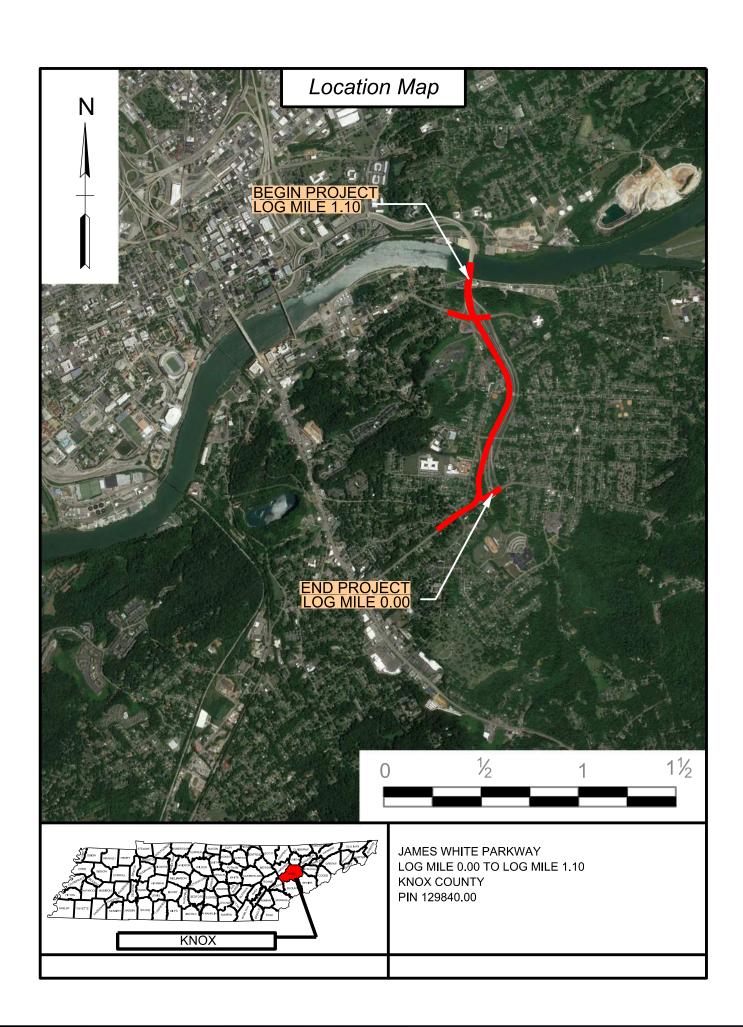
James White Parkway Field Visit Summary Sheet

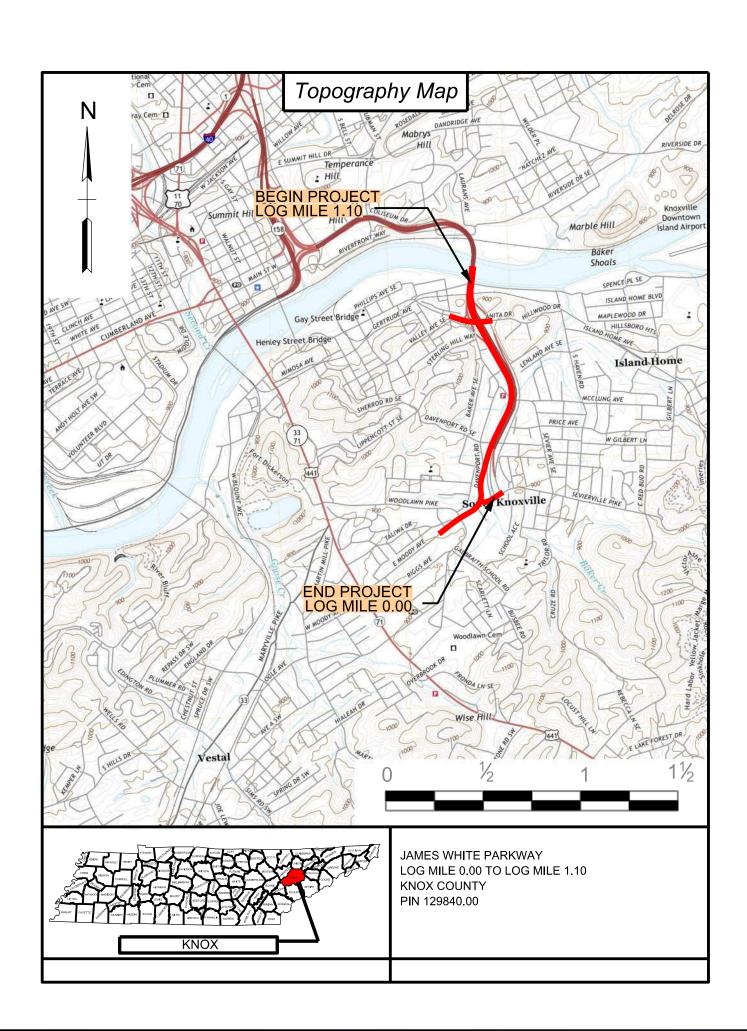
Location: Knox County

Roadway: James White Parkway from Tennessee River to Moody Avenue

Section: L.M. 1.10 to L.M. 0.00 Field Review: December 4, 2020

Description of Project and Background

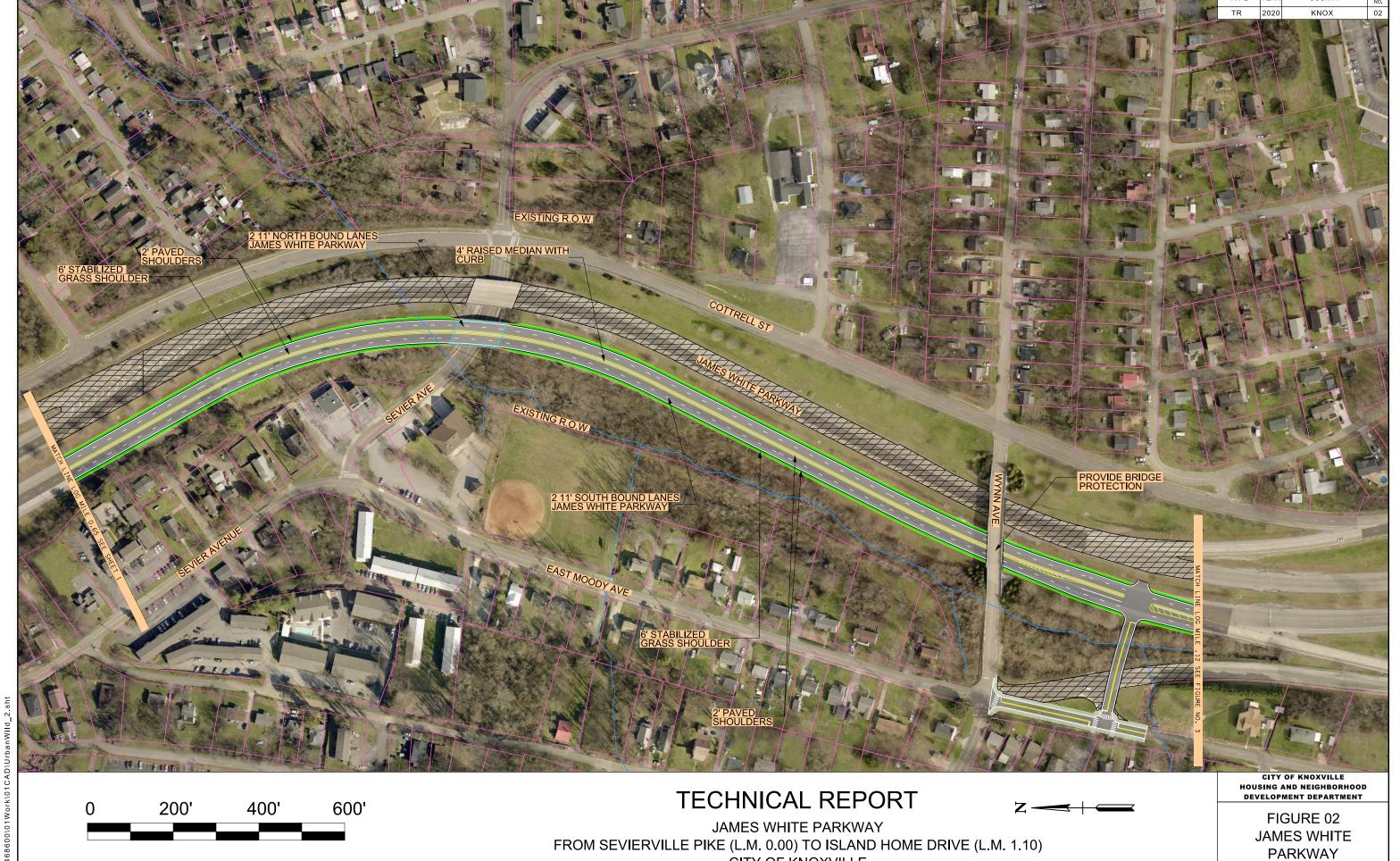

This project involves James White Parkway from the Tennessee River to Moody Avenue. James White Parkway is currently a four-lane divided highway with 22' inside shoulders and 10' outside shoulders. It is proposed that northbound and southbound traffic be combined into the existing southbound lanes; in a separate project the northbound lanes will be converted into a linear park with a greenway. The proposed typical section includes two 11' lanes in each direction, 2' paved inside shoulders, 2' paved outside shoulders, 6' stabilized grass outside shoulders, and a 4' raised median. The attached conceptual typical sections show the two proposed options that includes leaving the roadway superelevated as-is or reconstructing half of the roadway to normal crown tangent sections. The proposed project also encompasses realigning the interchange at Moody Avenue to allow the through movement to be James White Parkway to Moody Avenue.


Segment Overview

- The project location is between L.M. 1.10 and L.M. 0.00 on James White Parkway.
- James White Parkway is classified as an urban expressway.
- The posted speed limit south of the bridge on James White Parkway is 55 mph and 45 mph north of the bridge. The proposed speed limit is 35 mph.
- The AADT of James White Parkway at the Bridge is 20,679.
- There have been 72 total crashes (57 property damage, 12 non-incapacitating injury, and 3 incapacitating injury).
- 39% of the crashes involved rear-end.
- 76% of the crashes occurred during dry conditions.
- 74% of the crashes occurred at an intersection

Structures

Route	Crossing	Log Mile	Structure #	Type*	Length (ft) (Max Span (ft))	Sufficiency Rating	Verticle Clearance	Condition
Moody Avenue	James White Parkway	1.20	47000710009	СС	220 (118)	96.80	16' - 00"	Good
Wynn Avenue	James White Parkway	1.01	47000710011	СС	242 (121)	78.40	18' - 02"	Good
James White Parkway	Sevier Avenue	0.53	47000710013	PC	110 (105)	96.00	16' - 09"	Good
James White Parkway	Sevier Avenue	0.53	47000710014	PC	110 (105)	97.00	17' - 03"	Good
Sevier Avenue	James White Parkway	0.43	47000710015	СС	255 (130)	99.00	16' - 08"	Good
Baker Creek	-	-	47000710019	Box Culvert	1 @ 18'	-	-	Good
Baker Creek	=	-	47000710021	Box Culvert	2 @ 8'	-	-	Good
*Note: PC = Prestressed Concrete, CC = Continuous Concrete								



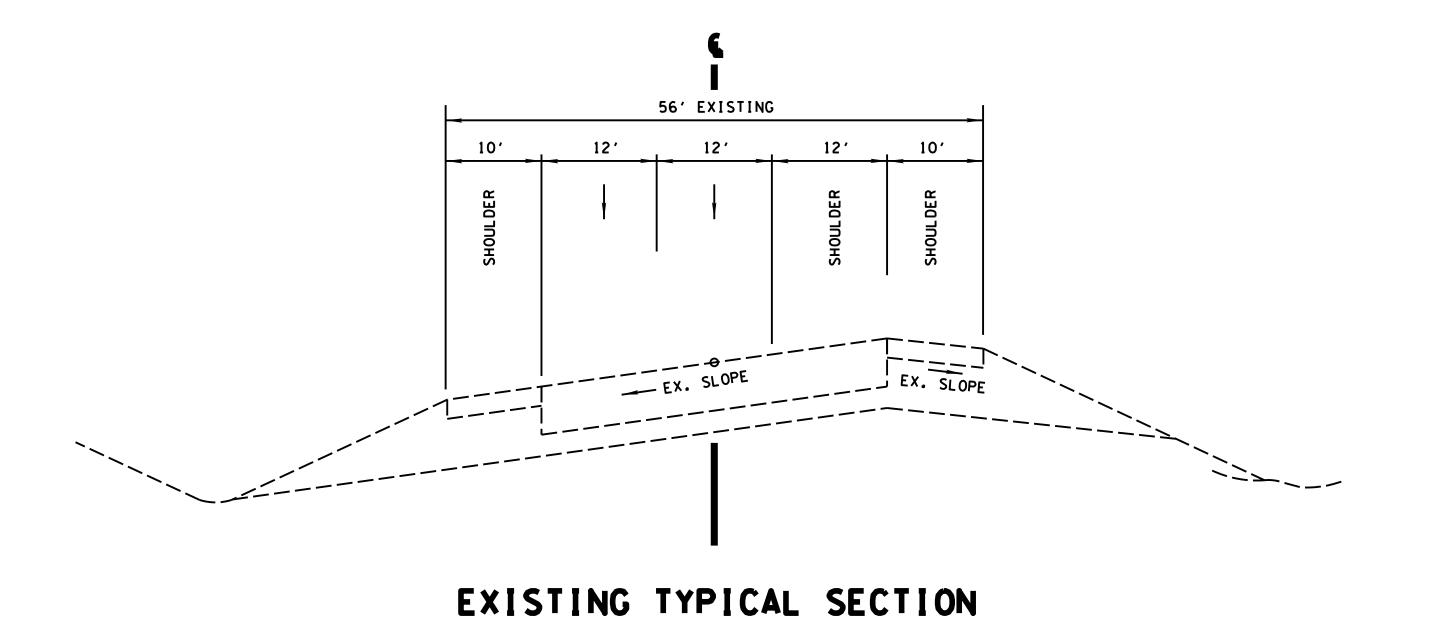
L.M. 1.10 TO L.M. 0.65

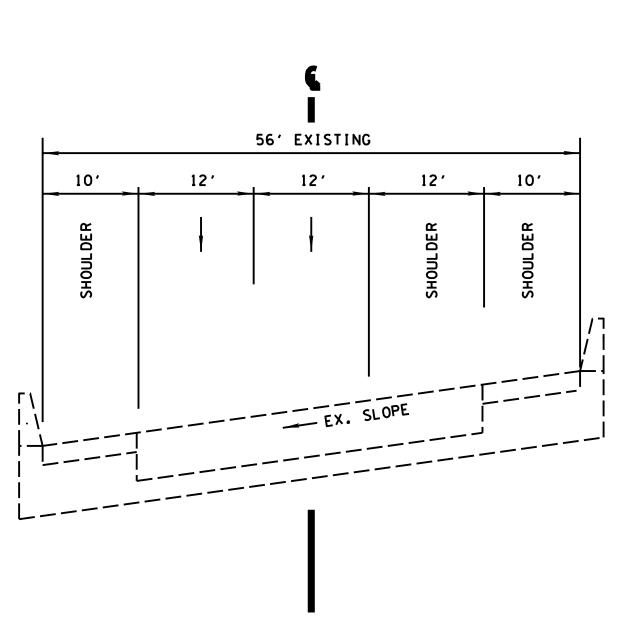
12/1/2020 2:53:31 PM

CITY OF KNOXVILLE

L.M. 0.65 TO L.M. 0.12

12/1/2020 2:48:20 PM

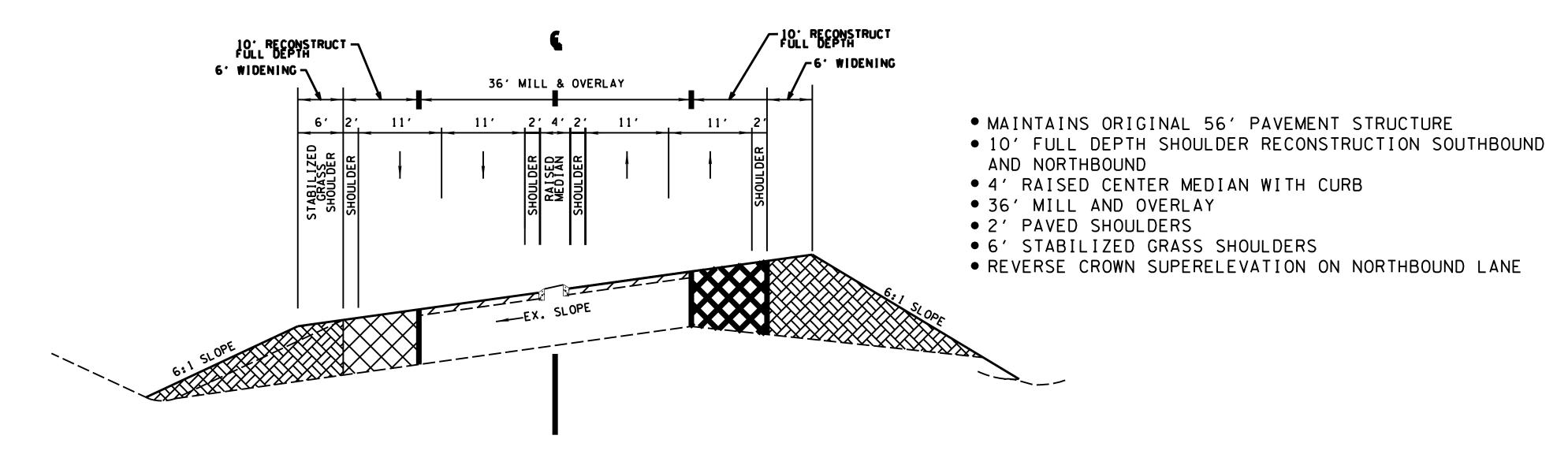

FROM SEVIERVILLE PIKE (L.M. 0.00) TO ISLAND HOME DRIVE (L.M. 1.10)
CITY OF KNOXVILLE


JAMES WHITE

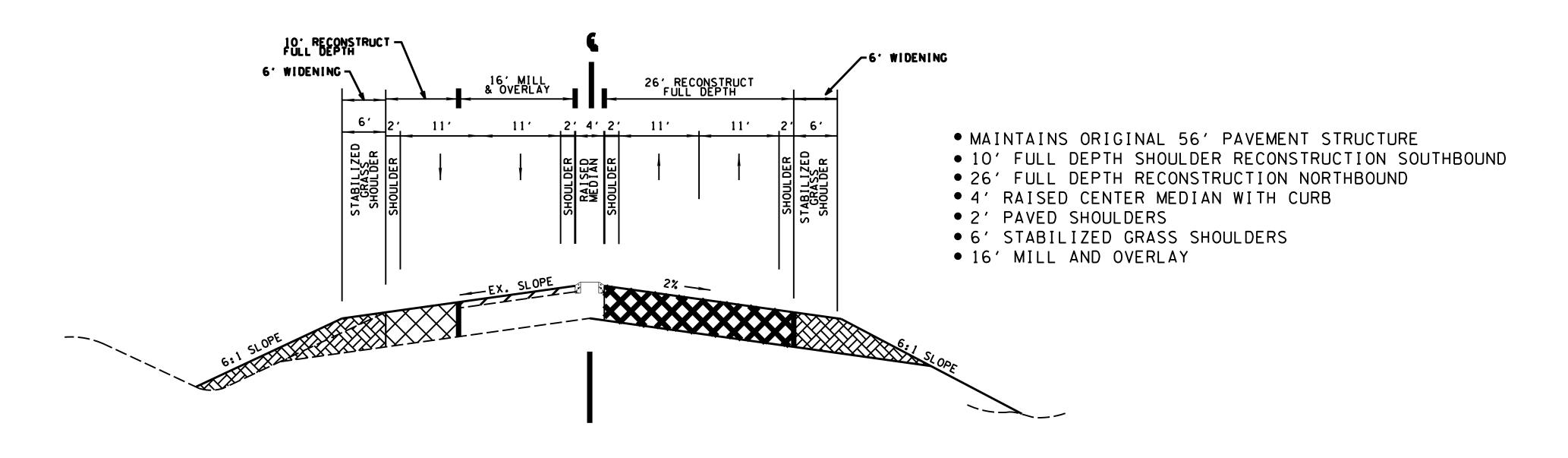
PARKWAY L.M. 0.12 TO L.M. 0.00

TYPE YEAR COUNTY FIGURE NO.

TR 2020 KNOX TYP1


EXISTING BRIDGE OVER SEVIER AVENUE TYPICAL SECTION

CONCEPTUAL
TYPICAL SECTIONS


CITY OF KNOXVILLE
HOUSING AND NEIGHBORHOOD
DEVELOPMENT DEPARTMENT

JAMES WHITE
PARKWAY
CONCEPTUAL PLANS

TYPE	YEAR	COUNTY	FIGURE NO.	
TR	2020	KNOX	TYP2	

PROPOSED SUPER ELEVATION SECTION

PROPOSED TANGENT SECTION

CONCEPTUAL TYPICAL SECTIONS

CITY OF KNOXVILLE
HOUSING AND NEIGHBORHOOD
DEVELOPMENT DEPARTMENT

JAMES WHITE
PARKWAY
CONCEPTUAL PLANS

<u>CITY OF KNOXVILLE URBAN WILDERNESS PROJECT – JAMES WHITE PARKWAY</u>

FIELD REVIEW MEETING NOTES

City of Knoxville Contract: C-20-0270

TDOT PIN: 129840.00

Gresham Smith Project No. 44686.00

Meeting Date: Friday, December 4th, 2020

Meeting Time: 10:00 AM EDT

Meeting Location: James White Parkway Project Site

1. Roll Call

Name	Organization	In Attendance	
Shap Stiles	Gresham Smith	X	
Jason Brady	Gresham Smith	X	
Adam Davidson	Gresham Smith	X	
Ben Nicholas	Gresham Smith	X	
Patrick Fiveash	Fiveash Gresham Smith		
George Daws	orge Daws City of Knoxville		
Shawn Fitzpatrick	wn Fitzpatrick City of Knoxville		
Zach Roberts	City of Knoxville	X	
Ellen Zavisca	Knoxville-Knox County Planning	X	
Michael Gilbert	TDOT STID	X	
Caleb Smith	TDOT STID	X	
Douglas Tarwater	TDOT Region 1	X	
Jason Sholtz	TDOT Region 1	X	
Nick Barnard	TDOT Region 1	X	

2. Project Introduction –

- Introductions of all in attendance and organization.
- Stiles gave project overview.
 - The project started in July and anticipates submitting the completed Draft Technical Report in December. The project has had interim submittals that includes Traffic Data (approved), Traffic Projections (approved), and Traffic Analysis (submitted October).
 - Reviewed Concept Plans Project is proposing shifting the northbound (NB) lanes over to the southbound (SB) side of the roadway. The proposed typical section would consist of 2-11 foots lane in both NB and SB direction, 2 foot inside shoulders and 4 foot raised median, and 2 foot paved outside shoulder with 6 foot reinforced grass shoulder. The project proposes removing three ramps which include SB onramp at Anita Drive, NB offramp at Anita

CITY OF KNOXVILLE URBAN WILDERNESS PROJECT – JAMES WHITE PARKWAY

Gresham Smith Project No. 44686.00 December 4, 2020 Page 2

KICKOFF MEETING AGENDA (Cont'd):

Drive and the NB onramp at Sevierville Pike (this ramp is being merged with SB ramp). The project is also proposing realignment of the intersection at James White Parkway (JWP) and Sevierville Pike to change the through movement of the three-legged intersection to be inline with the turning movements at the intersection. The posted speed limit proposed for the corridor is 35 mph.

3. Field Review Comments

- Question was raised the typical section does not correlate to TDOT standards. The discussion from project team was the functional classification of the corridor is being modified with this project from an expressway to a local street. The 2 foot paved and 6 foot grass shoulders along the roadway are proposed to maintain a natural scenic atmosphere and aesthetics to match the intent for the area while still providing safe area for someone to pull off the roadway. With the consolidation to the SB side of the roadway, space is limited but the project team did not want to propose a 4-lane facility with double yellow stripe. The raised 4 foot median and 2 foot inside shoulder provide separation between the opposing lanes. At the southern limit of the project, once the corridor is past the park entrance, the typical changes to an urban section for approximately 1000 feet.
- Question was asked about ability to maintain a 35 mph posted speed.
 Discussion from project team was with the typical proposed, the reduction
 in lane width, adjacent opposing lanes, and lack of paved shoulder within
 what will become a park atmosphere are the goals for changing the feel
 of driving the corridor. The entire project corridor length is around 1 mile.
- Question was asked if roundabout was considered at the terminus at JWP and Sevierville Pike. The discussion from project team was a review of a roundabout was considered. The current traffic volumes and proposed volumes are at the limits of single lane roundabout. Also, one of the project goals was to maintain the ability of the corridor to be utilized as a four-lane detour route. JWP is staying four lanes and to convert would mean re-striping Moddy Avenue only.
- Question was asked about why is the project removing the SB onramp at Anita. Discussion from project teams was it removes the free-flow access at Anita Drive where bike lanes are proposed and always a safety issue. Also, the goal of the project is to have this corridor not resemble an expressway with the free-flowing access points and to start operating like a boulevard through a park setting.
- Question was asked if a dual left at JWP to Sevierville Pike is warranted. The traffic projections in the future are exceeding typical single lane volumes. Discussion from project team included the approach from JWP to the intersection is two lanes with one dedicated completely to the left turn volume and one to the through volume. The accepting lanes on Sevierville Pike is only a single lane and would require widening the bridge to accommodate accepting dual lefts. It is also a three legged intersection which means more time can be dedicated to the a protected left phase

CITY OF KNOXVILLE URBAN WILDERNESS PROJECT – JAMES WHITE PARKWAY

Gresham Smith Project No. 44686.00 December 4, 2020 Page 3

KICKOFF MEETING AGENDA (Cont'd):

and then with the single left, the ability to still operate a permissive move during the all green phase. A single left will operate better for the majority of the day because of the protected / permissive operations allowed for lefts vs. a double left that would require protected only operations. Basically, a double would likely work slightly better during the peak hours, but worse the rest of the day. With the proposed project and implementation of the park, there is anticipation of high pedestrian and bike volumes and the ability to reduce crossing distance is a benefit to these movements.

- Question was asked if TDOT Multimodal has reviewed the plans or do we want to wait until the complete technical report is submitted. Project team stated they would send along updated concept plans that take into account some of the comments from the meeting. One was to incorporate the pedestrian projects under design/construction so multimodal understands this project is solely concerned with traffic movements from the bridge to the termini.
- The Access Control fence is currently along Cottrell Street. When the NB lanes are moved to the SB side of the corridor, the report will propose moving the access control fence to the location of the existing median. This will enable the linear park that takes the place of the existing NB lanes to have access to the Cottrell Street Greenway while maintaining access control to James White Parkway.
- Question was asked about providing connection from JWP over to Moddy Avenue. This access point was aligned with the entrance to the Park of JWP. Everyone agreed with the access to the Park but had concerns about the connection to the neighborhoods. Concerns include sight distance and it being small local street it might encourage pedestrian traffic to use it to cross JWP which is not a goal of the project. The project proposes no pedestrian access along the corridor until the termini at the signalized intersection.
- Question was asked about the design speed at the realigned intersection of JWP and Sevierville Pike. Project team noted it is design to an urban 35 mph design speed with max SE of 4% (510 foot radius).
- Question about ROW for realignment of JWP and Sevierville Pike intersection. Project Team answer ROW will be required. It will also mean removal of existing box culvert and realignment of stream with construction of new box. The new alignment of the stream will reduce the amount of stream encapsulation compared to the existing condition.

The notes represent our understanding of the items discussed at this meeting. If you have any questions or comments concerning any of the information contained herein, please contact me.

Prepared by: Shap Stiles

Project Manger